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Abstract. Let X = (Xt)t≥0 be a continuous semimartingale and let F : IR+×

IR → IR be a C1 function. Then the change-of-variable formula is valid:

F (t,Xt) = F (0, X0) +

∫
t

0

Ft(s, Xs) ds +

∫
t

0

Fx(s, Xs) dXs

−
1

2

∫
t

0

∫

IR

Fx(s, x) d`
x

s

where `x

s is the local time of X at x defined by:

`
x

s = IP−lim
ε↓0

1

ε

∫
s

0

I(x ≤ Xr < x + ε) d
〈
X, X

〉
r

and d`x

s refers to an area integration with respect to (s, x) 7→ `x

s . Further ex-
tensions of this formula for non-smooth functions F are also briefly examined.
The approach leads to a formal d`x

t calculus which appears useful in guessing
a candidate formula for F (t, Xt) before a rigorous proof is known or given.

1. Introduction

The fundamental result of stochastic calculus is Itô’s formula (2.1) firstly estab-
lished by Itô [5] for a standard Brownian motion and then later extended to contin-
uous semimartingales by Kunita and Watanabe [7]. [For simplicity in this article
we will not consider semimartingales with jumps.] The function F appearing in
Itô’s formula is C2 in the space variable, and the correction to the classic Leibnitz-
Newton formula (the final term in (2.1) below) is expressed by means of the qua-
dratic variation (2.2).

Various extensions of the Itô formula have been established for functions F
which are not C2 in the space variable. The best know of these extensions is the
Itô-Tanaka formula (2.3) firstly derived by Tanaka [13] for F (x) = |x| and then
extended to absolutely continuous F with F ′ of bounded variation by Meyer [9]
and Wang [14]. The correction term appearing in this formula is expressed by
means of the local time (2.4) which goes back to Lévy [8] (see e.g. [6] or [12]).

1991 Mathematics Subject Classification. Primary 60H05, 60J55; Secondary 60G44, 60J65.
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A different extension to absolutely continuous F with locally bounded F ′ due to
Bouleau and Yor [1] is given in (2.5) below. The correction term appearing in this
formula is also expressed by means of the local time (2.4), however, in a different
manner which suggests a formal integration by parts. Both formulas (2.3) and
(2.5) are derived only in dimension one.

Motivated by applications in free-boundary problems of optimal stopping [10]
we have recently derived an extension of Itô’s formula [11] stated in (2.11) below.
The most interesting in this formula, in comparison with the extensions above,
is its final term where the possible jump of Fx(s,·) along the curve s 7→ b(s) is
integrated with respect to the time variable s of the local time `b

s from (2.12)
below.

In our attempts to understand a more general rule unifying the various cor-
rection terms reviewed above, we have noticed that Eisenbaum [3] made a fun-
damental contribution in the case of standard Brownian motion by deriving the
extension of Itô’s formula stated in (2.8) below. The correction term in this for-
mula is expressed as an area integral with respect to both the time variable s
and the space variable x of the local time `x

s from (2.4) below. The arguments of
Eisenbaum rely on combining the Bouleau-Yor extension (2.5) with the Föllmer-
Protter-Shiryaev extension (2.6) and thus strongly depend on the time-reversal
property of standard Brownian motion.

The main aim of the present article is to make use of the formula (2.11)
below and show that the representation of the correction term in the Eisenbaum’s
extension (2.11) as an area integral with respect to the local time-space (as we call
it in short) is not only restricted to a time-invariant Brownian motion process but
extends quite generally to all continuous semimartingales. This is firstly done for
C1 functions F in Section 3, and then extended to absolutely continuous functions
F with Ft and Fx of bounded variation in Section 4.

We make no attempt in the present article to specify the most general class of

functions H for which the double integral
∫ t

0

∫
IR

H(s, x) d`x
s makes sense. Instead

in Section 5 we will show how a number of known extensions of the Itô formula
can be obtained by formal manipulations of the d`x

s integral. This formalism (or
formal d`x

t calculus as we call it) appears to be useful when one needs to guess a
candidate formula for F (t, Xt) before a rigorous proof is known or given. A typical
example of this guessing mechanism is given in the end of Section 5. It remains
a challenging task, however, to carry out this programme on firm mathematical
grounds to a more satisfactory completion.

2. Itô formula and extensions

In this section we will review various extensions of the Itô formula for the purpose
of comparison and for further reference.
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1. Itô formula ([5], [7]). Let X = (Xt)t≥0 be a continuous semimartingale
(see e.g. [12]) and let F : IR+×IR → IR be a C1,2 function. Then we have:

F (t, Xt) = F (0, X0) +

∫ t

0

Ft(s, Xs) ds +

∫ t

0

Fx(s, Xs) dXs(2.1)

+
1

2

∫ t

0

Fxx(s, Xs) d
〈
X, X

〉
s

where
〈
X, X

〉
s

is the quadratic variation of X given by:

(2.2)
〈
X, X

〉
s

= IP− lim
n→∞

∑

si∈Dn
s

(Xsi
−Xsi−1

)2

and the set Dn
s consists of arbitrary points 0 = s0 < s1 < . . . < sn−1 < sn = s

satisfying max 1≤i≤n(si − si−1) → 0 as n → ∞ .

2. Itô-Tanaka formula ([13], [9], [14]). Let X = (Xt)t≥0 be a continuous semi-
martingale and let F : IR → IR be an AC function with F ′ of BV . [Throughout
AC stands for absolutely continuous, and BV for bounded variation. It is equiva-
lent to F = F1−F2 where F1 and F2 are convex functions.] Then we have:

(2.3) F (Xt) = F (X0) +

∫ t

0

F ′
−(Xs) dXs +

1

2

∫

IR

`x
t dF ′(x)

where `x
t is the local time of X at the point x defined by:

(2.4) `x
t = IP − lim

ε↓0

1

ε

∫ t

0

I(x≤Xs <x+ε) d
〈
X, X

〉
s
.

The formula (2.3) remains valid if the left-derivative F ′
− is replaced by the right-

derivative F ′
+ provided that I(x ≤ Xs < x + ε) in (2.4) is replaced by I(x−ε <

Xs≤x).

3. Bouleau-Yor extension [1]. Let X = (Xt)t≥0 be a continuous semimartin-
gale and let F : IR → IR be an AC function with F ′ locally bounded. Then:

(2.5) F (Xt) = F (X0) +

∫ t

0

F ′(Xs) dXs −
1

2

∫

IR

F ′(x) dx`x
t

where dx`x
t refers to an integration with respect to x 7→ `x

t . The latter function is
known to be of unbounded variation generally, and so is the final term in (2.5) as
a function of t .

4. Föllmer-Protter-Shiryaev extension [4]. Let B = (Bt)t≥0 be a standard
Brownian motion and let F : IR+×IR → IR be a measurable function satisfying
the following conditions: (i) t 7→ F (t, x) is AC ; (ii) x 7→ F (t, x) is AC; (iii)
x 7→ Ft(t, x) belongs to L1

loc ; (iv) x 7→ Fx(t, x) belongs to L2
loc ; (v) t 7→ Ft(t, · )

is continuous from IR+ to L1
loc ; (vi) t 7→ Ft(t, · ) is continuous from IR+ to L2

loc .
Then we have:

(2.6) F (t, Bt) = F (0, B0) +

∫ t

0

Ft(s, Bs) ds +

∫ t

0

Fx(s, Bs) dBs +
1

2
[Fx( · , B), B]t
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where [Fx( · , B), B]t is the quadratic covariation given by:

(2.7) [Fx( · , B), B]t = IP− lim
n→∞

∑

ti∈Dn

t

(
Fx(ti, Bti

)−Fx(ti−1, Bti−1
)
)(

Bti
−Bti−1

)

and the set Dn
t consists of arbitrary points 0 = t0 < t1 < . . . < tn−1 < tn = t

satisfying max 1≤i≤n(ti − ti−1) → 0 as n → ∞ .

5. Eisenbaum’s extension [3]. Let B = (Bt)t≥0 be a standard Brownian mo-
tion and let F : IR+×IR → IR be a measurable function satisfying the following con-

ditions: (i) t 7→ F (t, x) is AC ; (ii) x 7→ F (t, x) is AC; (iii)
∫ t

0

∫
IR
|Ft(s, x)| (1/

√
s)

ds dx < ∞ ; (iv)
∫ t

0

∫
IR
|Fx(s, x)|2 (1/

√
s) ϕ(x/

√
s) ds dx < ∞ ; (v)

∫ t

0

∫
IR
|Fx(s, x)|

(|x|/√s) ϕ(x/
√

s) ds dx < ∞ . [We recall that ϕ(x) = (1/
√

2π) exp(−x2/2) for
x ∈ IR .] Then we have:

F (t, Bt) = F (0, B0) +

∫ t

0

Ft(s, Bs) ds +

∫ t

0

Fx(s, Bs) dBs(2.8)

− 1

2

∫ t

0

∫

IR

Fx(s, x) d`x
s

where `x
s is the local time of B at the point x given by (2.4) above, and d`x

s refers
to an area integration with respect to (s, x) 7→ `x

s .

6. Cherny’s extension [2]. Let B = (Bt)t≥0 be a standard Brownian motion
and let F : IR → IR be an AC function with F ′ being AC on IR \ {0} . Then:

F (Bt) = F (B0) +

∫ t

0

F ′(Bs) dBs +
1

2
lim
ε↓0

(F ′(ε)−F ′(−ε)) `0
t(2.9)

+
1

2

(
v.p.

∫ t

0

F ′′(Bs) ds

)

whenever the principal value integral:

(2.10) v.p.

∫ t

0

F ′′(Bs) ds = lim
ε↓0

∫ t

0

F ′′(Bs) I(|Bs|>ε) ds

exists as a limit in probability.

7. Extension with local time on curves [11]. Let X = (Xt)t≥0 be a continuous
semimartingale and let b : IR+ → IR be a continuous function of bounded variation.
Setting C = { (s, x) ∈ IR+×IR | x < b(s) } and D = { (s, x) ∈ IR+×IR | x > b(s) }
suppose that a continuous function F : IR+×IR → IR is given such that F is C1,2

on C and F is C1,2 on D . Then we have:

F (t, Xt) = F (0, X0) +

∫ t

0

Ft(s, Xs−) ds +

∫ t

0

Fx(s, Xs−) dXs(2.11)

+
1

2

∫ t

0

Fxx(s, Xs) I(Xs 6=b(s)) d
〈
X, X

〉
s
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+
1

2

∫ t

0

(
Fx(s, Xs+)−Fx(s, Xs−)

)
I(Xs =b(s)) d`b

s

where `b
s is the local time of X at the curve b defined by:

(2.12) `b
s = IP−lim

ε↓0

1

ε

∫ s

0

I(b(r)≤Xr <b(r)+ε) d
〈
X, X

〉
r

and d`b
s refers to the integration with respect to the continuous increasing func-

tion s 7→ `b
s . The formula (2.11) remains valid if the left-limits Ft(s, Xs−) and

Fx(s, Xs−) are replaced by the right-limits Ft(s, Xs+) and Fx(s, Xs+) provided
that I(b(r)≤Xr <b(r)+ε) in (2.12) is replaced by I(b(r)−ε≤Xr <b(r)) .

8. Formal d`x
t extension [Sections 3–5]. Let X = (Xt)t≥0 be a continuous

semimartingale and let F : IR+× IR → IR be a measurable function satisfying
certain regularity conditions. Then we have:

F (t, Xt) = F (0, X0) +

∫ t

0

DtF (s, Xs) ds +

∫ t

0

DxF (s, Xs) dXs(2.13)

− 1

2

∫ t

0

∫

IR

DxF (s, x) d`x
s

where `x
s is the local time of X at the point x given by (2.4) above, and d`x

s refers
to an area integration with respect to (s, x) 7→ `x

s . The operators Dt and Dx refer
to a differentiation with respect to t and x , respectively.

9. The occupation times formula (cf. [12] or [6]). Let X = (Xt)t≥0 be a
continuous semimartingale. Comparing the final terms in (2.1) and (2.3) when F
is C2 and using the monotone class theorem (see e.g. [12] page 3) it follows:

∫ t

0

G(Xs) d
〈
X, X

〉
s

=

∫

IR

G(x) `x
t dx(2.14)

for every bounded measurable function G : IR → IR . Similarly, inspecting first the
case of G = 1(t1,t2]×(x1,x2] and then using the monotone class theorem, one gets
the following extension of (2.14) to the time-dependent case:

∫ t

0

G(s, Xs) d
〈
X, X

〉
s

=

∫

IR

( ∫ t

0

G(s, x) ds`
x
s

)
dx(2.15)

for every bounded measurable function G : IR+×IR → IR .

3. Local time-space formula

This section consists of two parts. In the first part we will define a local time-space
integral of simple functions. In the second part we will extend it to more general
functions.

1. Let X = (Xt)t≥0 be a continuous semimaringale, and let `x
t be the local

time of X at the point x given by (2.4) above.
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With t > 0 given and fixed, let us introduce the following families of functions:

P1 = {1(t1,t2] 1(x1,x2] | 0 ≤ t1 < t2 ≤ t,−∞ < x1 < x2 < ∞}(3.1)

P2 = {C 1(x1,x2] | C ∈ C1([0, t]),−∞ < x1 < x2 < ∞}(3.2)

P3 = {C d | C ∈ C1([0, t]), d ∈ C(IR) }(3.3)

H1 = {H | H = Fx for some F ∈ C1([0, t]×IR) }(3.4)

H2 = {H | H = Fx for some F ∈ C2([0, t]×IR) }(3.5)

H1,2 = {H | H = Fx for some F ∈ C1,2([0, t]×IR) }(3.6)

M = {H | H : [0, t]×IR → IR is measurable }.(3.7)

For C ⊂ M let sp(C) denote the smallest subspace of M containing C . For
example, we have:

(3.8) sp(P1) = {∑n

i=1 αi 1(ti−1,ti] 1(xi−1,xi] |α1, . . . , αn ∈ IR , n ≥ 1 }
where there is no restriction to assume that 0 ≤ t1 < t2 < . . . < tn and x1 < x2 <
. . . < xn .

Let L0 denote the space of all random variables (defined on (Ω,F , IP ) where
X is defined) equipped with the metric of convergence in IP -probability.

Define an operator Λ : P1 → L0 by setting:

(3.9) Λ(1(t1,t2] 1(x1,x2]) = `x2

t2
− `x2

t1
+ `x1

t1
− `x1

t2

and extend it by linearity to sp(P1) as follows:

(3.10) Λ(
∑n

i=1 αi 1(ti−1,ti] 1(xi−1,xi]) =
∑n

i=1 αi (`x2

t2
− `x2

t1
+ `x1

t1
− `x1

t2
)

both in reminiscence to the classic area integral in plane.
Let Λ also denote the linear extension of Λ from sp(P1) to D(Λ) satisfying

the following continuity condition:

(3.11) Hn
`→ H0 ⇒ Λ(Hn) → Λ(H0) in IP−probability

where Hn
`→ H0 if and only if the following two conditions hold:

Hn → H0 with |Hn| ≤ G for all n ≥ 1 where G is locally bounded(3.12)

∂s

∫
Hn dy

∼→ ∂s

∫
H0 dy(3.13)

the meaning of (3.13) being that:

(3.14)
∫ t

0
(∂s

∫ x

0
Hn(s, y) dy)

∣∣
x=h(s)

→
∫ t

0
(∂s

∫ x

0
H0(s, y) dy)

∣∣
x=h(s)

for every continuous function h : [0, t] → IR as n → ∞, where ∂s

∫ x

0 Hn(s, y) dy

denotes the signed measure associated with the BV mapping s 7→
∫ x

0 Hn(s, y) dy
for n ≥ 0.

The question then arises to determine if there exists such an extension of Λ
and if it is unique. More precisely, it is of interest to determine (characterize) the
maximal subspace of M to which Λ can be extended uniquely. This subspace is
then denoted by D(Λ) and is called the (maximal) domain of Λ .
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We will not deal with the latter question in full generality. Instead we will
display subspaces of M to which Λ can be extended uniquely and its action deter-
mined explicitly. In this section we will show that H1 from (3.4) above is one such
subspace (with a further subspace H1,2 of particular interest). In the next section
we will make attempts to go beyond the subspace H1 at some moderate depth.

2. It is naturally guessed using (3.9) that P2 ⊂ D(Λ) and that we have:

(3.15) Λ(C 1(x1,x2]) =
∫ t

0
C(s) (ds`

x2
s − ds`

x1
s )

for C 1(x1,x2] from P2 . A formal verification can be carried out using that sp(P1)
is dense in P2 relative to the `-convergence in (3.11) (recalling also that s 7→ `xi

s

is increasing and continuous). We take (3.11) to be the initial point in the proof
of the following theorem.

Theorem 3.1. There exists a unique linear extension of Λ from sp(P1) to sp(P1 ∪
P2 ∪ P3 ∪ H1) satisfying (3.10) and (3.11). In view of (3.9) this extension will be
denoted by either of the area integrals:

(3.16) Λ(H) =

∫ t

0

∫

IR

H(s, x) d`x
s =

∫

IR

∫ t

0

H(s, x) d`x
s

where the order of integration is interchanged formally.

Proof. The key argument in the proof will be provided using the following
extension of the formula (2.11) to the case when instead of one function b we are
given finitely many functions b1, . . . , bn which do not intersect (cf. Remarks 3.2
and 3.3 in [11]).

More precisely, let us assume that the following conditions are satisfied:

bi : IR+ → IR is continuous and of bounded variation for 1 ≤ i ≤ n(3.17)

Fi : IR+×IR → IR is C1,2 for 1 ≤ i ≤ n + 1(3.18)

F (t, x) = F1(t, x) if x < b1(t)(3.19)

= Fi(t, x) if bi−1(t) < x < bi(t) for 2 ≤ i ≤ n

= Fn+1(t, x) if x > bn(t)

where F : IR+×IR → IR is continuous. Then (2.11) extends as follows:

F (t, Xt) = F (0, X0) +

∫ t

0

Ft(s, Xs−) ds +

∫ t

0

Fx(s, Xs−) dXs(3.20)

+
1

2

∫ t

0

Fxx(s, Xs) I
(
Xs /∈{b1(s), . . . , bn(s)}

)
d
〈
X, X

〉
s

+
1

2

n∑

i=1

∫ t

0

(
Fx(s, Xs+)−Fx(s, Xs−)

)
I(Xs =bi(s)) d`bi

s (X)

where `bi

s is the local time of X at the curve bi given by (2.12) above, and d`bi

s (X)
refers to the integration with respect to s 7→ `bi

s (X) for i = 1, . . . , n . [The formula
(3.20) remains valid if the left-limits Ft(s, Xs−) and Fx(s, Xs−) are replaced by
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the right-limits Ft(s, Xs+) and Fx(s, Xs+) provided that I(bi(r)≤Xr <bi(r)+ε)
in the definition (2.12) is replaced by I(bi(r)−ε≤Xr <bi(r)) for i = 1, . . . , n .]

1. Take C 1(x1,x2] from P2 , set d(x)=1(x1,x2](x) , and let D(x)=
∫ x

0
d(y) dy.

Setting b1(s) ≡ x1 , b2(s) ≡ x2 , F1(s, x) ≡ 0 , F2(s, x) = C(s)(x − x1) and
F3(s, x) = C(s)(x2−x1) we see that (3.17)-(3.19) are satisfied so that (3.20) gives:

C(t)D(Xt) = C(0)D(X0) +

∫ t

0

C ′(s)D(Xs) ds +

∫ t

0

C(s)d(Xs) dXs(3.21)

+
1

2

( ∫ t

0

C(s) ds`
x1

s −
∫ t

0

C(s) ds`
x2

s

)

using that Fx(s, b1(s)+) − Fx(s, b1(s)+) = C(s) (d(x1+) − d(x1−)) = C(s) and
Fx(s, b2(s)+) − Fx(s, b2(s)+) = C(s) (d(x2+) − d(x2−)) = −C(s) .

In view of (3.15) above, the final term in (3.21) may be recognized as a
negative action of the operator Λ on C 1(x1,x2] , or in other words:

C(t)D(Xt) = C(0)D(X0) +

∫ t

0

C ′(s)D(Xs) ds(3.22)

+

∫ t

0

C(s) d(Xs) dXs −
1

2
Λ(C d)

yielding a stochastic-integral representation for the action of Λ on P2 .

2. Given c = 1(t1,t2] with 0 ≤ t1 < t2 ≤ t introduce the convolution approxi-
mation by defining a sequence of functions Cn with n ≥ 1 as follows:

(3.23) Cn(s) =

∫

IR+

c(s − r/n) Ω(r) dr

where Ω : IR → IR is C∞ with supp(Ω) = [0, 1] and
∫

IR
Ω(r) dr = 1 . Then

Cn : [0, t] → IR is C∞ and Cn → c as n → ∞ with |Cn| ≤ 1 for all n ≥ 1 .

Moreover C ′
n

∼→ δt1 − δt2 i.e.
∫ t

0
h(s) dCn(s) → h(t1) − h(t2) for every continuous

function h : [0, t] → IR as n → ∞ .

Inserting Cn in place of C in (3.22) and letting n → ∞ , using the convergence
relations just exhibited and the stochastic dominated convergence theorem (see e.g.
[12] page 142), as well as (3.11) above, we get:

c(t)D(Xt) = c(0)D(X0) + (D(Xt1)−D(Xt2))(3.24)

+

∫ t

0

c(s)d(Xs) dXs −
1

2
Λ(c d)

yielding a stochastic-integral representation for the action of Λ on P1 .

3. Take C d from P3 and choose a sequence of simple functions:

(3.25) dn =

kn∑

i=1

βn
i 1(xn

i−1
,xn

i
]
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so that dn → d as n → ∞ with |dn| ≤ g for all n ≥ 1 where g is locally bounded.
Setting Dn(x) =

∫ x

0
dn(y) dy we also have Dn → D as n → ∞ with |Dn| ≤ Γ for

all n ≥ 1 where Γ is locally bounded.

Inserting Dn in place of D in (3.22) above, and likewise dn in place of d ,
letting n → ∞ and using the dominated convergence theorem (both deterministic
and stochastic) and localization, as well as (3.11) above, it follows that (3.22)
extends to all C ∈ C1(IR+) and D ∈ C1(IR) . In particular, it shows that (3.22)
holds for all polynomials in two variables s and x .

4. Take H from H2 and let F be from C2([0, t]×IR) such that H = Fx . For

this F there exists a sequence of polynomials P n(s, x) =
∑kn

i=1 Ci,n(s)Di,n(x) such
that P n → F , P n

t → Ft and P n
x → Fx uniformly on a compact set in IR+×IR as

n → ∞ [for this use that Ftx is continuous and find a sequence of polynomials P̃ n

such that P̃ n → Ftx on a given compact set by means of the Weierstrass theorem;

the sequence P n(s, x) =
∫ s

0

∫ x

0 P̃ n drdy then has the desired properties]. Extending
then (3.22) by linearity from C(s)D(x) to P n(s, x), letting n → ∞ in the resulting
formula, and using the dominated convergence theorem (both deterministic and
stochastic) and localization, as well as (3.11) above, we obtain:

∫ Xt

0

H(t, y) dy =

∫ X0

0

H(0, y) dy +

∫ t

0

(
∂

∂s

∫ x

0

H(s, y) dy

)∣∣∣
x=Xs

ds(3.26)

+

∫ t

0

H(s, Xs) dXs −
1

2
Λ(H)

yielding a stochastic-integral representation for the action of Λ on H2 .

5. Take H from H1 and let F be from C1([0, t]×IR) such that H = Fx .
Associate with this F the convolution approximation:

(3.27) F n(s, x) =

∫

IR+

∫

IR

F (s−r/n, x−y/n) Ω(r) Ω(y) dr dy

where Ω is the same as in (3.23) above. Then F n is C∞ and we have F n → F ,
F n

t → Ft, F n
x → Fx uniformly on a compact set in IR+×IR as n → ∞ .

Setting Hn = F n
x and inserting this Hn in place of H in (3.26) above, letting

n → ∞ and using the dominated convergence theorem (both deterministic and
stochastic) and localization, as well as (3.11) above, it follows that (3.26) extends
to all H ∈ H1 .

6. Combining this fact with (3.22) and (3.24) we see that the stochastic-
integral representation (3.26) (with (∂/∂s)ds replaced by ∂s when needed) for the
action of Λ on H holds for all H ∈ sp(P1∪P2∪P3∪H1) from where by (3.12)-(3.14)
using the dominated convergence theorem (both deterministic and stochastic) it
follows that (3.11) holds on the entire sp(P1 ∪ P2 ∪ P3 ∪ H1). This shows that
the definition of Λ is not dependent on the particular choice of the approximating
sequence used above, and the proof of the theorem is complete.

�
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Corollary 3.2 (Local time-space formula). Let X = (Xt)t≥0 be a continuous semi-
martingale and let F : IR+×IR → IR be a C1 function. Then the following change-
of-variable formula holds:

F (t, Xt) =F (0, X0) +

∫ t

0

Ft(s, Xs) ds +

∫ t

0

Fx(s, Xs) dXs(3.28)

− 1

2

∫ t

0

∫

IR

Fx(s, x) d`x
s

where `x
s is the local time of X at the point x given by (2.4) above, and d`x

s refers
to the area integration with respect to (s, x) 7→ `x

s established in Theorem 3.1.

Proof. It follows by (3.16) and (3.26) above.

�

Corollary 3.3 (Integration by parts). If H ∈ H1,2 then we have:

(3.29)

∫

IR

∫ t

0

H(s, x) d`x
s = −

∫

IR

( ∫ t

0

Hx(s, x) ds`
x
s

)
dx

and if H ∈ H2 then we have:

(3.30)

∫ t

0

∫

IR

H(s, x) d`x
s =

∫

IR

H(t, x) dx`x
t −

∫ t

0

( ∫

IR

Ht(s, x) dx`x
s

)
ds

where d`x
s refers to the area integration with respect to (s, x) 7→ `x

s established in
Theorem 3.1.

Proof. The first identity follows by comparing (3.28) with (2.1) and using
(2.15). [It also follows by a formal partial integration upon setting u(x) = H(s, x)

and dv(x) = dx(
∫ t

0 ds`
x
s ) so that du(x) = Hx(s, x) dx and v(x) =

∫ t

0 ds`
x
s with

`±∞
s ≡ 0 .] The second identity follows by a formal partial integration upon setting

u(s) = H(s, x) and dv(s) = ds(
∫

IR
dx`x

s ) so that du(s) = Ht(s, x) ds and v(s) =∫
IR

dx`x
s with

∫
IR

dx`x
0 ≡ 0 . [It can be justified using (2.5) above but we will omit

the details.]

�

In contrast to the semimartingale decomposition of F (t, Xt) in Itô’s formula
(2.1) when F is C1,2, it is important to realize that the final term in (3.28) is not
necessarily of bounded variation in t when F is C1 only. [In dimension one the
same remark holds for the formulas (2.3) and (2.5), respectively.]

A comparison of (3.28) with (2.6)+(2.7) suggests that Λ admits a representa-
tion as the difference of a forward and backward stochastic integral at least when
X is time-reversal invariant such as a Brownian motion process (cf. [3]). We will
not examine this interesting point any further in the present article.
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4. Extended local time-space formula

The level of generality reached in the preceding section by extending the operator
Λ to H1 is somewhere between (2.1) and (2.3). It is thus natural to pursue further
extensions so to recover the Itô-Tanaka formula (2.3) as a special case in dimension
one.

Convexity in two dimensions is more complicated and there seem to be no
simple AC +BV characterization as in dimension one according to which F =
F1−F2 where F1 and F2 are convex if and only if F is AC with F ′ of BV . Moreover,
considering the setting of (2.11) above and letting b to oscillate wildly (being also
a more general curve in IR+×IR rather than just a function of time) we see that the
assumption of the existence of the one-sided limits Ft(s−, x−) and Fx(s−, x−) may
generally be rather restrictive. It is however exceedingly difficult to incorporate all
special cases under a general condition which is technically not too demanding.
We therefore state the theorem below more as an indication of what can be done
in special cases than to give a final word on all possible extensions.

In the setting of Section 3 above, with t > 0 given and fixed, let us denote
by C1

−([0, t]×IR) the family of functions F : [0, t]×IR → IR satisfying the following
conditions:

limits Ft(s−, x−) and Fx(s−, x−) exist at all (s, x) ∈ [0, t]×IR(4.1)

(s, t) 7→ Ft(s−, x−) and (s, t) 7→ Fx(s−, x−) are locally bounded(4.2)

on [0, t]×IR.

Extend the family H1 from (3.4) as follows:

(4.3) H−
1 = {H | H(s, x) = Fx(s−, x−) for some F ∈ C1

−([0, t]×IR) }.
Denoting C = P1 ∪P2 ∪P3 ∪H1 we then have the following sequel to Theorem 3.1
above.

Theorem 4.1. There exists a unique linear extension of Λ from sp(C) to sp(C ∪H−
1 )

satisfying (3.10) and (3.11). In view of (3.9) this extension will also be denoted by
(3.16) above.

Proof. Take H ∈ H−
1 and let F be from C1

−([0, t]×IR) such that H(s, x) =
Fx(s−, x−) for all 0 ≤ s ≤ t and all x ∈ IR . Associate with this F the convolution
approximation F n from (3.27) above. Then F n is C∞ and F n(s, x) → F (s, x),
F n

t (s, x) → Ft(s−, x−) and F n
x (s, x) → Fx(s−, x−) for all (s, x) ∈ [0, t]× IR .

Moreover, by means of (4.2) we can achieve that |F n
t | ≤ γ and |F n

x | ≤ G for all
n ≥ 1 where γ and G are locally bounded on [0, t]×IR .

Setting Hn = F n
x and inserting this Hn in place of H in (3.26) above, letting

n → ∞ and using the dominated convergence theorem (both deterministic and
stochastic) and localization, as well as (3.11) above, it follows that (3.26) extends
to all H ∈ H−

1 .

�
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Corollary 4.2 (Extended local time-space formula). Let X = (Xt)t≥0 be a con-
tinuous semimartingale and let F : IR+×IR → IR be a function from the class
C1

−([0, t]×IR) with t > 0 . Then the following change-of-variable formula holds:

F (t, Xt) =F (0, X0) +

∫ t

0

Ft(s−, Xs−) ds +

∫ t

0

Fx(s−, Xs−) dXs(4.4)

− 1

2

∫ t

0

∫

IR

Fx(s−, x−) d`x
s

where `x
s is the local time of X at the point x given by (2.4) above, and d`x

s refers
to the area integration with respect to (s, x) 7→ `x

s established in Theorem 4.1.

Proof. It follows from the proof of Theorem 4.1 above.

�

Corollary 4.3 (Integration by parts for products). If C : IR+ → IR and D : IR → IR
are of BV then we have:

∫

IR

∫ t

0

C(s)D(x) d`x
s = −

∫

IR

( ∫ t

0

C(s) ds`
x
s

)
dD(x)(4.5)

= C(t)

∫

IR

D(x) dx`x
t −

∫ t

0

( ∫

IR

D(x) dx`x
s

)
dC(s)

= −C(t)

∫

IR

`x
t dD(x) +

∫ t

0

( ∫

IR

`x
s dD(x)

)
dC(s)

where d`x
s refers to the area integration with respect to (s, x) 7→ `x

s established in
Theorem 4.1.

Proof. It follows by combining the results of Corollary 4.2 and Corollary 3.3.

�

In particular, when C(s) ≡ 1 and Fx(s−, x−) = D(x) then the formula (4.4)
above together with the final identity in (4.5) reduces to the Itô-Tanaka formula
(2.3).

In a general case of (3.29) the first identity in (4.5) can be written as follows:

(4.6)

∫

IR

∫ t

0

H(s, x) d`x
s = −

∫

IR

∫ t

0

dxH(s, x) ds`
x
s

but it may be not so obvious to determine its sense.

Clearly, replacing the left-limits in (4.1)-(4.3) above with the right-limits it
follows that Theorem 4.1, Corollary 4.2 and Corollary 4.3 extend to the case where
H−

1 is replaced by H+
1 provided that I(x ≤ Xs < x+ε) in the definition (2.4) is

replaced by I(x−ε<Xs≤x) .
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5. Formal d`
x

t
calculus

In this section we will show how extensions of Itô’s formula reviewed in Section 2
above can be obtained by formal manipulations of the d`x

s integral in the formula
(2.13) which we recall here:

F (t, Xt) = F (0, X0) +

∫ t

0

DtF (s, Xs) ds +

∫ t

0

DxF (s, Xs) dXs(5.1)

− 1

2

∫ t

0

∫

IR

DxF (s, x) d`x
s .

The formulas (3.28) and (4.4) derived above are special cases of this general for-
mula.

This formalism appears to be useful for at least two reasons. Firstly, it helps to
develop intuition needed to understand and compare known formulas. Secondly, if
a new function F is given and one needs to write down a change-of-variable formula
for F (t, Xt) , then such a formalism can be helpful in guessing a candidate formula
before a rigorous proof is found. This will be illustrated in the final example below.

Let us now apply the formal d`x
t calculus and show how formulas (2.3), (2.5),

(2.9) and (2.11) follow from (5.1). We assume throughout that X = (Xt)t≥0 is a
continuous semimartingale and F is a given function defined on IR+ or IR+×IR with
values in IR . Relevant properties of F will be inherited from Section 2 without
further mentioning.

1. Formulas (2.3) and (2.5). In this case (5.1) reads as follows:

(5.2) F (Xt) = F (X0) +

∫ t

0

F ′
−(Xs) dXs −

1

2

∫

IR

F ′
−(x) dx`x

t

which (at least formally) coincides with the formula (2.5). To obtain (2.3) let us
perform a formal partial integration in the final integral upon setting u(x) = F ′

−(x)
and dv(x) = dx`x

t so that du(x) = dF ′
−(x) and v(x) = `x

t . The final integral in
(5.2) then transforms as follows:

(5.3)

∫

IR

F ′
−(x) dx`x

t = F ′
−(x) `x

t

∣∣∞
x=−∞

−
∫

IR

`x
t dF ′

−(x) = −
∫

IR

`x
t dF ′(x)

where we use that `±∞
t ≡ 0 . Inserting (5.2) into (5.1) we formally obtain (2.3).

2. Formula (2.9). In this case (5.1) reads as follows:

(5.4) F (Xt) = F (X0) +

∫ t

0

F ′(Xs) dXs −
1

2

∫

IR

F ′(x) dx`x
t .

The final integral in (5.4) can be written as:

(5.5)

∫

IR

F ′(x) dx`x
t =

∫

{|x|≤ε}

F ′(x) dx`x
t +

∫

{|x|>ε}

F ′(x) dx`x
t .
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A formal partial integration in the first integral on the right-hand-side upon setting
u(x) = F ′(x) and dv(x) = dx`x

t so that du(x) = dF ′(x) and v(x) = `x
t yields:

∫

{|x|≤ε}

F ′(x) dx`x
t =

( ∫

(−ε,0)

+

∫

{0}

+

∫

(0,ε)

)
F ′(x) dx`x

t(5.6)

= F ′(x) `x
t

(∣∣0−
x=−ε

+
∣∣0
x=0

+
∣∣ε
x=0+

)
−

∫

(−ε,0)∪(0,ε)

`x
t dF ′(x)

−
∫

{0}

`x
t dF ′(x) → (−`0

t ) (F ′(0+)−F ′(0−))

as ε ↓ 0 . Moreover, using (3.29) and (2.14) we see that the second integral trans-
forms as follows:∫

{|x|>ε}

F ′(x) dx`x
t = −

∫

{|x|>ε}

F ′′(x) `x
t dx(5.7)

= −
∫ t

0

F ′′(Xs) I(|Xs|> ε) d
〈
X, X

〉
s
.

Letting ε ↓ 0 in (5.5) using (5.6) and (5.7), where d
〈
X, X

〉
s
= ds when X is stan-

dard Brownian motion, and inserting the resulting identity in (5.4), we formally
obtain (2.9).

3. Formula (2.11). In this case (5.1) reads as follows:

F (t, Xt) = F (0, X0) +

∫ t

0

Ft(s, Xs−) ds +

∫ t

0

Fx(s, Xs−) dXs(5.8)

− 1

2

∫ t

0

∫

IR

Fx(s, x−) d`x
s .

The final integral in (5.9) can be written as:
∫ t

0

∫

IR

Fx(s, x−) d`x
s =

∫ t

0

∫

IR\{b(s)}

Fx(s, x−) d`x
s(5.9)

+

∫

{b(s)}

Fx(s, x−) dx

(∫ t

0

ds`
x
s

)
.

Using (3.29) and (2.15) in the first integral on the right-hand-side and a for-
mal partial integration in the second integral upon setting u(x) = Fx(s, x−) and

dv(x) = dx(
∫ t

0
ds`

x
s ) so that du(x) = dxFx(s, x−) and v(x) =

∫ t

0
ds`

x
s , we get:

∫ t

0

∫

IR

Fx(s, x−) d`x
s = −

∫ t

0

( ∫

IR\{b(s)}

Fxx(s, x)ds`
x
s

)
dx(5.10)

+
(
Fx(s, x−)

∫ t

0

ds`
x
s

)∣∣∣
b(s)

x=b(s)
−

∫

{b(s)}

( ∫ t

0

ds`
x
s

)
dxFx(s, x−)

= −
∫ t

0

Fxx(s, Xs) I(Xs 6=b(s)) d
〈
X, X

〉
s
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−
∫ t

0

(
Fx(s, b(s)+)−Fx(s, b(s)−)

)
ds`

b
s

upon a formal identification
∫ t

0
ds`

b(s)
s =

∫ t

0
ds`

b
s . Inserting the resulting identity

(5.10) into (5.8) we formally obtain (2.11).
4. Finally, let us briefly examine a new case not covered by known formulas

from Section 2. For this, let us consider the setting of (2.11) where instead of a
function b : IR+ → IR of time we are given a function c : IR → IR of space. Setting
C = { (s, x) ∈ IR+×IR | s < c(x) } and D = { (s, x) ∈ IR+×IR | s > c(x) } suppose
that a continuous function F : IR+×IR → IR is given such that F is C1,2 on C
and F is C1,2 on D . The question then arises to write down a change-of-variable
formula for F (t, Xt) .

In this case (5.1) reads as follows:

F (t, Xt) = F (0, X0) +

∫ t

0

Ft(s−, Xs) ds +

∫ t

0

Fx(s−, Xs) dXs(5.11)

− 1

2

∫

IR

∫ t

0

Fx(s−, x) d`x
s .

The final integral in (5.11) can be written as:
∫

IR

∫ t

0

Fx(s−, x) d`x
s =

∫

IR

∫

[0,t]\{c(x)}

Fx(s−, x) d`x
s(5.12)

+

∫

{c(x)}

Fx(s−, x) ds

(∫

IR

dx`x
s

)
.

Using (3.29) and (2.15) in the first integral on the right-hand-side and a for-
mal partial integration in the second integral upon setting u(s) = Fx(s−, x) and
dv(s) = ds(

∫
IR

dx`x
s ) so that du(s) = dsFx(s−, x) and v(s) =

∫
IR

dx`x
s , we get:

∫

IR

∫ t

0

Fx(s−, x) d`x
s = −

∫

IR

( ∫

[0,t]\{c(x)}

Fxx(s, x)dsd`x
s

)
dx(5.13)

+
(
Fx(s−, x)

∫

IR

dx`x
s

)∣∣∣
c(x)

x=c(x)
−

∫

{c(x)}

( ∫

IR

dx`x
s

)
dsFx(s−, x)

= −
∫ t

0

Fxx(s, Xs) I(s 6=c(Xs)) d
〈
X, X

〉
s

−
∫

IR

(
Fx(c(x)+, x)−Fx(c(x)−, x)

)
dx`x

c

upon a formal identification
∫ t

0 dx`x
c(x) =

∫ t

0 dx`x
c . To give sense to the latter

integral introduce:

(5.14) `x
c = IP−lim

ε↓0

1

ε

∫

c−1([0,t])

I(x≤Xc(x) <x+ε) d
〈
X, X

〉
c(x)

.

Then the final integral in (5.13) may be interpreted as the integral with respect
to x 7→ `x

c , and inserting (5.13) into (5.11), we obtain the following candidate for
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the change-of-variable formula:

F (t, Xt) =F (0, X0) +

∫ t

0

Ft(s−, Xs) ds +

∫ t

0

Fx(s−, Xs) dXs(5.15)

+
1

2

∫ t

0

Fxx(s, Xs)I(s 6=c(Xs))d
〈
X, X

〉
s

+
1

2

∫

IR

(
Fx(c(x)+, x)−Fx(c(x)−, x)

)
dx`x

c

In order to view the final integral differently note that:

(5.16) `x
c = IP−lim

ε↓0

1

ε

∫ t

0

I(c−1(s)≤Xs <c−1(s)+ε) d
〈
X, X

〉
s

where c−1(s) = {x∈ IR | c(x) = s } and I(c−1(s)≤Xs < c−1(s)+ε) denotes the
corresponding sum of I(x≤Xs <x+ε) over x running through c−1(s) .

Similar candidate formulas can be obtained when b or c above is a curve in
IR+×IR defined through a mapping γ : [0, 1] → IR+×IR , but we will omit the
details. It is an interesting problem to establish these formulas rigorously under
natural conditions.
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