
Affine random equations and the stable (1
2)

distribution
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1 Introduction and main result

In various probabilistic areas of research, affine random equations are stu-
died, i.e. given a pair (A,B) of random variables, one is interested in the
study of all possible variables X such that :

X
(law)
= A+BX, (1.1)

where, on the right-hand side, X is independent from the pair (A,B). (See,
e.g., Babillot, Bougerol and Elie [?] for some recent study in the so-called
critical case, and the references therein).
Converse studies, for which the law of X is given a priori, and one looks for
all possible pairs (A,B) of random variables satisfying (??) seem to be less
popular. In the present note, we discuss the important particular case of
such a converse study when X ≡ T is the stable ( 1

2
) variable, i.e. :

P (T ∈ dt) =
dt√
2πt3

exp(− 1

2t
).

More precisely, we are interested in giving a description of all possible pairs
(S, L) of random variables taking values in IR+ such that :

T
(law)
= S + L2T. (1.2)
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Our motivation to study this particular converse equation is that it arises very
naturally when dealing with strictly positive continuous local martingales
(Mt, t ≥ 0) converging to 0 as t→ ∞. More precisely, one has the following

Lemma 1.1 Let (Mt; t ≥ 0) be a IR+-valued, continuous local (Ft) martin-
gale, such that M0 = 1, and Mt →t→∞ 0, and let θ be any finite (Ft) stopping
time. Then, the pair (S = 〈M〉θ, L = Mθ) solves (??).

Proof: First, we remark that the Dubins-Schwarz representation of (Mt) :
Mt = β〈M〉t , t ≥ 0, where (βu, u ≥ 0) is a Brownian motion, implies that

〈M〉∞
(law)
= T . Applying the same argument to (Mθ+u, u ≥ 0), conditionally

on Fθ, and writing :

〈M〉∞ = 〈M〉θ + (〈M〉∞ − 〈M〉θ),
we obtain that :

T
(law)
= 〈M〉θ + (Mθ)

2T,

where, on the right-hand side, T is independent of the pair (〈M〉θ,Mθ). 2

Remark: The identity (??) may also be presented in a more analytic manner
as follows :

for every λ ≥ 0 , E[exp(−(
λ2

2
S + λL))] = exp(−λ). (1.3)

Of course, this agrees with the well known fact that, under the hypothesis of
Lemma 1,

exp(−λMt∧θ −
λ2

2
〈M〉t∧θ)

is a bounded martingale; hence:

E[exp(−λMθ −
λ2

2
〈M〉θ)] = exp(−λ). (1.4)

The main result of this Note is the following:

Theorem 1.1 Let L ≥ 0. In order that, on an adequate probability space, a
variable S may be constructed such that (S, L) satisfies (??), it is necessary
and sufficient that :

E(L) ≤ 1. (1.5)

Moreover, if E(S) <∞, then E(L) = 1.
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Proof: a) First, we assume that (S, L) satisfies (??). Then, from (??), we
deduce : for any λ ≥ 0,

exp(−λ) ≤ E(exp(−λL)],

or equivalently:
1 − E(exp(−λL)] ≤ 1 − exp(−λ)

Then, we write:

1 − exp(−x) = x
∫ 1

0
dy exp(−xy),

and we deduce:

E[L
∫ 1

0
dy exp(−λLy)] ≤ 1 − exp(−λ)

λ
.

Letting λ decrease to 0, we obtain as a consequence of the Beppo-Levi theo-
rem: E(L) ≤ 1.

b) Conversely, let us assume: E(L) = c ≤ 1. Denote by µ the law of
(L− c); µ is carried by [−c,∞), and it satisfies:

∫

xµ(dx) = 0.
Next, we consider any procedure leading to a solution of Skorokhod’s em-
bedding problem relative to µ, that is precisely any stopping time Tµ in the
filtration of (Bt; t ≥ 0) a real valued Brownian motion such that :

i) the law of BTµ is µ;

ii) (Bt∧Tµ ; t ≥ 0) is uniformly integrable.

As a consequence of ii), we have :

Bt∧Tµ = E[BTµ |Ft∧Tµ] ≥ −c.

Hence, if we denote T−c = inf{t ≥ 0;Bt = −c}, we obtain T−c ≥ Tµ a.s., so
that:

T−c = Tµ + inf{v ≥ 0;Bv+Tµ −BTµ = −c− BTµ}.
Since the Brownian motion (Bv+Tµ − BTµ ; v ≥ 0) is independent from FTµ ,
we may write:

T−c
(law)
= Tµ + (c+BTµ)2T
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where, on the right-hand side, T is independent from the pair (Tµ, BTµ).
To finish the proof, we remark that :

T−1
(law)
= T−c + (1 − c)2T ′

where T ′ is again a stable ( 1
2
) variable, independent from T−c, so that we have

finally obtained : T
(law)
= S + L2T where: S = (1 − c)2T ′ + Tµ; L = c+BTµ .

If E(S) < ∞, then Xλ := λ2

2
S + λL (λ ≥ 0) is integrable. By Jensen’s

inequality,
exp(−E(Xλ)) ≤ E(exp(−Xλ)),

which implies that λ ≤ λ2

2
E(S) + λE(L). Dividing the inequality by λ and

letting λ→ 0, we obtain E(L) ≥ 1. 2

Remark:
1) To illustrate the above construction, we recall the explicit construction

of Tµ given by Azéma-Yor [?]:
if St := sups≤tBs and Ψµ(x) = 1

µ([x,∞[)

∫

[x,∞[ y dµ(y), then the stopping time :

Tµ = inf{t ≥ 0;St ≥ Ψµ(Bt)}

solves Skorohod’s embedding problem relative to µ, i.e. BTµ ∼ µ.
2) The last assertion in Theorem 1.1 admits no converse. Indeed, if the

distribution µ of L − 1 satisfies
∫

x2µ(dx) = ∞, then S = Tµ given by the
construction of Azéma-Yor satisfies E(S) = ∞. (see [?])

In the second part of this note, rather than trying to develop an extended
”zoology” of pairs (S, L) such that (??) is satisfied, we concentrate on ex-
amples where S and L are independent. On the analytic side, we see, from
(??), that this corresponds to the factorization of : λ→ exp(−λ) as:

exp(−λ) = ϕ1(λ)ϕ2(
λ2

2
), (1.6)

where ϕ1 and ϕ2 are two Laplace transforms of probabilities on IR+. In terms
of S and L, ϕ1(λ) = E[exp(−λL)]; ϕ2(µ) = E[exp(−µS)], λ, µ ≥ 0.

If, moreover, we assume that L is infinitely divisible, there is the following
characterization.
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Theorem 1.2 Let L ≥ 0 be infinitely divisible with Lévy exponent:

ψ(λ) =
∫ ∞

0
µ(dt)(1 − exp(−λt)).

In order that, on an adequate probability space, a variable S may be con-
structed such that:

i) S and L are independent;

ii) (S, L) satisfies (??),

it is necessary and sufficient that:

ψ(λ) ≤ λ (1.7)

or, equivalently,
∫ ∞

0
t µ(dt) ≤ 1. (1.8)

In this case, E(L) =
∫∞
0 t µ(dt) and S is also infinitely divisible.

Proof: a) We first assume that i) and ii) are satisfied. Thus we have:

exp(−λ) = exp(−ψ(λ))E(exp(−λ
2

2
S)),

which immediately implies (??).
We now show that (??) and (??) are equivalent. Indeed, if (??) is satisfied,
then:

1 ≥ ψ(λ)

λ
=
∫ ∞

0
µ(dt)

∫ t

0
ds exp(−λs);

Letting λ decrease to 0, we obtain (??).
Conversely, if (??) is satisfied, since 1 − exp(−λt) ≤ λt, we immediately
obtain (??).
The differentiation of the Laplace transform of L with respect to λ gives

E(L) =
∫ ∞

0
t µ(dt).

b) Conversely, we now assume that (??) (or equivalently (??)) is satisfied,
then we shall show that there exists a Lévy measure ρ(dt) on IR+ such that:

λ− ψ(λ) =
∫ ∞

0
ρ(dt)(1 − exp(−λ

2

2
t)) (1.9)
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which, a fortiori, proves the desired result.
Assuming, for a moment, the existence of ρ, we obtain, after taking deriva-
tives on both sides, and dividing by λ :

1

λ
=

1

λ

∫ ∞

0
µ(dt) t exp(−λt) +

∫ ∞

0
ρ(dt) t exp(−λ

2

2
t). (1.10)

Since both 1
λ

and 1
λ

∫∞
0 µ(dt)t exp(−λt) are Laplace transforms in λ2

2
, we

obtain, from the injectivity of the Laplace transform :

1√
2πt

=
1√
2πt

∫ ∞

0
µ(ds) s exp(−s

2

2t
) + t (ρ(dt)/dt) , (1.11)

showing at the same time, that ρ(dt) must be absolutely continuous.
Now, we start working backwards : indeed, the condition (??) implies that :

1√
2πt

(

1 −
∫ ∞

0
µ(ds)s exp(−s

2

2t
)

)

is positive, and then ρ(dt) defined from (??) is indeed a Lévy measure, i.e. :
it satisfies

∫∞
0 ρ(dt)(t ∧ 1) <∞, since this is the case with the left hand side

of (??) divided by t; more precisely :

∫ ∞

0

dt

t3/2
(t ∧ 1) <∞. 2

Remark: From this theorem, we can give an explicit construction of a pair
(S, L) satisfying the condition of Theorem 1.2 with E(L) = 1 and E(S) = ∞.

Indeed, take µ(dt) = (α + 1)
dt

tα+1
1(t≥1), 1 < α ≤ 2, then the Lévy measure ρ

of S given by (??) satisfies
∫∞
0 tρ(dt) = ∞ which implies E(S) = ∞.

2 Examples of pairs (S, L).

In the following examples,(Bt, t ≥ 0) denotes a Brownian motion and

T = inf{t ≥ 0;Bt = 1}.

The following remarks yield an important class of solutions to (??):

6



1) By the scaling property of T , if (S, L) is a solution of (??) with two

independent variables S and L, then for all n ∈ IN ∗,
(

S∗n

n2
,
L∗n

n

)

is still a

solution to (??) where ∗n denotes the convolution of order n. Moreover, if S
and L are infinitelty divisible, we can replace n ∈ IN ∗ by µ ∈ IR+.

2) to any stopping time S of the Brownian filtration satisfying S ≤ T , we
can associate an affine decomposition of the stable ( 1

2
) variable. Indeed,

T = S + inf{t ≥ 0, Bt+S − BS = 1 −BS}

and T
(law)
= S + (1 − BS)2T where on the right hand side, T is independent

of (S,BS).
We are now looking for such stopping times S such that S and BS are inde-
pendent.

Example 1: This is the case for S = T ∗
a = inf{t ≥ 0; |Bt| = a}, a ≤ 1.

In this case, the factorization (??) corresponds to :

ϕ1(λ) = exp(−λ)(cosh(λa)); ϕ2(
λ2

2
) =

1

cosh(λa)
.

Example 2: Let St = sups≤tBs. According to Pitman’s theorem, (Rt :=
2St − Bt, t ≥ 0) is a Bessel process of dimension 3, and conditionally to
Rt = σ(Rs; s ≤ t), the distribution of Bt is uniform on [−Rt, Rt].
Thus, if S = inf{t ≥ 0; 2St − Bt = a} (a ≤ 1), BS is uniform on [−a, a] and
independent of S.

The decomposition (*) T = S+(1−BS)2T leads to a decomposition (??)
with S and L independent. From the analytic side,

ϕ1(λ) =
sinh(λa) exp(−λ)

λa
; ϕ2(

λ2

2
) =

λa

sinh(λa)
.

Remark: We can also interpret the decomposition (*) with the help of
Williams decomposition of the Brownian path (Bt, t ≤ T ). Let

Σ = sup{t ≤ T,Bt = 0},

then, T = (T − Σ) + Σ where T − Σ and Σ are independent; the first time
is distributed as T (3) the first hitting time of 1 by a BES(3); the second one

7



as (2U)2T where U is uniform on [0,1], independent of T . Thus, we recover
equation (*) for a = 1.

Example 3: In the previous example, we gave a decomposition of T with

S
(law)
= T (3)

a . This suggests to look for an affine decomposition with S = T (d)
a

the first hitting time of a by a BES(d).
Let d = 2(ν + 1) > 1 and consider Rd−1 a Bessel process of dimension d− 1,
independent of (Bt), defined on the same probability space. Then Rd defined
by

R2
d(t) = R2

d−1(t) +B2(t)

is a BES(d) process. Let

T (d) = inf{t ≥ 0;Rd(t) = 1} < T,

then
T = T (d) + (1 − BT (d))2T (2.1)

where on the RHS of (??), (T (d), BT (d)) is independent of T .
Moreover, according to the strong intertwining relation established in [?,
Theorem 3.1],

E[f(B2
t )/Gt] = Λ1/2,(d−1)/2f(R2

d(t)) (2.2)

where Gt = σ{Rd(s); s ≤ t}, and

Λa,bf(y) = E[f(yZ)]

where Z denotes a beta(a, b) variable. The identity (??) extends when we
replace t by any Gt stopping time S. This implies that B2

T (d) is independent
of GT (d) (and therefore of T (d)) and is distributed as Z1/2,ν+1/2.
From this, we easily deduce that

(1 − BT (d))
(law)
= 2Xν

where Xν is a beta(ν + 1/2, ν + 1/2) variable, and (??) becomes :

T
(law)
= T (d) + (2Xν)

2T

with independence of the three variables on the right-hand side.
The corresponding factorization is

exp(−λ) =

(

Cν
λν

Iν(λ)

)

1

Cν

λ−νIν(λ) exp(−λ) (2.3)
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with Cν = 1
2νΓ(ν+1)

and 1
Cν
λ−νIν(λ) exp(−λ) = E(exp(−2λXν)).

Example 4: It is now tempting to look for a decomposition (??) with
S = L(d) = sup{t ≥ 0, Rd(t) = 1} where Rd is BES(d) with d > 3, although
L(d) is not a stopping time, at least in the natural filtration of the Bessel
process.
From the analytic point of view, we replace Cν

λν

Iν(λ)
in the factorization (??)

by C ′
νλ

νKν(λ) with C ′
ν = 21−ν

Γ(ν)
and the problem is the following :

is the function

λ 7→ ϕ
(ν)
1 (λ) :=

exp(−λ)

c′νλ
νKν(λ)

(2.4)

the Laplace transform of a probability on IR+?
The answer is positive for ν = 3/2 (d = 5). In this case, ϕ1(λ) = 1

1+λ
is the

Laplace transform of the exponential variable, with mean 1. This leads to
the decomposition

T
(law)
= L(5) + e2T (2.5)

where L(5), T and e are independent. On the analytical side,

E

(

exp(−λ
2

2
T )

)

= exp(−λ) ≡ ((1 + λ) exp(−λ))
1

1 + λ

When ν = n+1/2, n ∈ IN , the function Kn+1/2 can be expressed as (see [?]):

Kn+1/2(z) = (
1

z
)n+1/2

√

π

2
exp(−z)Pn(z)

where Pn is the Bessel polynomial given by:

Pn(z) =
n
∑

j=0

(
1

2
)j (n+ j)!

j!(n− j)!
zn−j.

We refer to Ismail-Kelker [?] where quotients of Bessel polynomials arose in
connection with the problem of the infinite divisibility of the Student distri-
bution.
In this particular case, the above question boils down to knowing whether

an

Pn(λ)
is the Laplace transform in λ of a probability on IR+, with an =

√

2
π
Γ(n+ 1/2)2n−1/2.

We recall the following result:
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Proposition 2.1 ([?]) If the function Φ(λ) =
1

c0 + c1λ+ . . .+ cnλn
, ci ∈

IR, cn 6= 0 is the Laplace transform of a probability on IR+, then:

i) c0 = 1,

ii) the polynomial P (z) = 1/Φ(z) does not have any root in iIR,

iii) if a ± ib (a 6= 0, b 6= 0) are two conjugate roots of P , then P has at
least a real root c satisfying : sgn(a) = sgn(c) and |c| ≤ |a|.

If n ≤ 4, the conditions i), ii) and iii) are sufficient.

It is known (see [?, p. 194]) that the zeros of the Bessel polynomials are
distinct, that they all lie in the left half plane and that there is only one real
zero for odd n and none for even n. In particular, for even n, the condition
iii) is not satisfied.

For n = 3, P3(λ)
a3

= 1
15

(λ3 + 6λ2 + 15λ + 15) and we can show that the last
condition in iii) is not satisfied.

A natural question is to find a probabilistic interpretation of equation
(??) (similar to Eq (??)).

Let d ∈ IN , d > 3, it is tempting, following Example 3, to consider B
(d)
t a d

dimensional Brownian motion, with components Bi(t), which we decompose

into (B
(3)
t , B

(d−3)
t ). Now, since T

(law)
= L(3), and that, obviously, L(3) > L(d),

we can write :

L(3) = L(d) + sup{v ≥ 0; |B(3)

L(d)+v
| = 1} := L(d) + Λ3,d. (2.6)

We shall see that this decomposition provides a decomposition of L(3) in two
independent variables.
First, we recall that the variable B

(d)

L(d) is uniformly distributed on the unit

sphere Sd−1 (⊂ IRd) and is independent from L(d). Now, we can write the
decomposition of B(d) in the filtration (FL(d)+t; t ≥ 0) using the progressive
enlargement of filtration after time L(d) (see [?]). According to [?, Theorem
12.5], for any Ft local martingale X,

XL(d)+t = XL(d) + X̃t −
∫ L(d)+t

L(d)

d〈X,Z〉s
1 − Zs

(2.7)
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where (Zt) is the (Ft) supermartingale: Zt = P (L(d) > t|Ft) and X̃ is a
(FL(d)+t; t ≥ 0) local martingale.

Now, it is easily shown that Zt = 1 ∧
(

1

|B
(d)
t |

)d−2

(see [?, (12.2.2)]), and that

for t ≥ L(d),

Zt = 1 − (d− 2)
∫ t

L(d)

dβu

|B(d)
u |d−1

where (βt) is the (Ft) Brownian motion

βt =
∫ t

0

d
∑

i=1

Bi(u) dBi(u)

|B(d)(u)| .

The decomposition (??) for X = B(d) gives:

B̂t := B
(d)

L(d)+t
= B̂0 + B̃t + (d− 2)

∫ t

0

B̂udu

|B̂u|2(|B̂u|d−2 − 1)

where B̂0 is uniform on Sd−1 and independent of L(d) and B̃ is a d dimen-
sional (FL(d)+t; t ≥ 0) Brownian motion.

This confirms that the process B̂ is independent of L(d) and in the decompo-
sition (??), the two variables on the right-hand side are independent.

From (??), it follows that:

Λ3,5 (law)
= e2T

(law)
= Te, (2.8)

but a priori, we do not know of any such representation for Λ3,d, when
d = 3 + m,m ∈ IN ∗. In particular, if d = 4k + 3, k ∈ IN ∗, Λ3,d is not dis-
tributed as L2T for any positive variable L independent of T , since ϕ

(2k+1/2)
1 ,

defined by (??), is not the Laplace transform of a probability on IR+ (see the
discussion after Proposition 2.1). Moreover, we have not found any pathwise
explanation to the identity (??), but we mention that it may be related to
the general result (due to Azéma) that if A∞ denotes the terminal variable
of (At), the dual predictable projection of 1(Σ≤t), where Σ is the end of a pre-
dictable set such that Σ avoids (Gt) stopping times, then A∞ is exponentially
distributed.
We conjecture that there is a critical value νc for which ϕ

(ν)
1 is a Laplace

transform for ν smaller than νc but is not for ν greater than νc.
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Example 5: We come back to Eq (??) : T
(law)
= L(5) + e2T , which may

be extended as follows. The factorization corresponding to (??) :

exp(−λ) = ((1 + λ) exp(−λ))
1

1 + λ

can be generalized as

exp(−λ) =

(

(1 +
λ

α
)α exp(−λ)

)

1

(1 + λ
α
)α

for any α > 0, and
1

(1 + λ
α
)α

= E(exp(−λeα

α
))

where eα denotes a Gamma variable of parameter α. Let (the law of) Sα be
defined by

E(exp(−(λ2/2) Sα)) = (1 +
λ

α
)α exp(−λ), (2.9)

then,

T
(law)
= Sα +

(

eα

α

)2

T.

The existence of a distribution satisfying (??) follows from Theorem 1.2,
since, in this case, ψ(λ) = α ln(1+ λ

α
) satisfies ψ(λ) ≤ λ. Moreover, the Lévy

measure ρα associated with Sα is given by (??) that is :

ρα(dt) =
1√
2πt3

(

1 −
∫ ∞

0
µ(ds) s exp(−s

2

2t
)

)

dt

where µ(dt) is the Lévy measure of eα

α
i.e.:

µ(dt) = α
exp(−αt)

t
dt.

An easy computation leads to :

ρα(dt) =
dt√
2πt3

g(α
√
t) (2.10)

where

g(ξ) =
∫ ∞

0
dy y exp(−y

2

2
− ξy).

We notice that Sα
(law)
= (L(5))∗α

α2 .
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3 Further examples using infinite divisibility

Example 5 led us to a large class of extensions. Indeed, from that Example,
it is natural to consider the factorisation:

exp(−λ) =
1

(1 + λ
b
)α

{

(1 +
λ

b
)α exp(−λ)

}

(3.1)

≡ ϕ1(λ)ϕ2(
λ2

2
), (3.2)

and to ask for which values of b, ϕ2 is the Laplace transform of a distribution
on IR+ (see (??) above). It is easily shown that this is satisfied for b ≥ α.
We now extend this remark as follows:

Theorem 3.1 Let ν(da) be a positive measure with compact support on IR+,
and total mass θ <∞. We consider the decomposition:

exp(−λ) = ϕ1(λ)ϕ2(
λ2

2
),

where

ϕ1(λ) = exp
(

−
∫

ν(da)(ln(1 + λa))
)

(3.3)

ϕ2(
λ2

2
) = exp

(

−
∫

ν(da)(
λ

θ
− ln(1 + λa))

)

. (3.4)

Then,

a) ϕ1 is the Laplace transform of
∫ ∞

0
a d

(

γν([0,a])

)

where (γt; t ≥ 0) de-

notes the standard gamma process;

b) ϕ2 is the Laplace transform of a positive measure on IR+, as soon as
∫

a ν(da) ≤ 1.

Comment 1: For a number of results about the gamma process (γt; t ≥ 0),
see e.g., Vershik-Yor [?], Tsilevich-Vershik-Yor [?], Diaconis-Kemperman [?].
Proof:

a) The gamma process (γt; t ≥ 0) is the subordinator such that, for each
t ≥ 0, γt is distributed as gamma (t). As a consequence, it is easily shown
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that for any bounded Borel function f : [0,∞[→ IR+, the following formula
holds:

E[exp
(

−λ
∫ ∞

0
f(a) d(γν([0,a]))

)

] = exp
(

−
∫

ν(da) ln(1 + λf(a))
)

,

which yields the first part of the theorem.
b) It remains to find under which condition on ν, there exists a Lévy

measure mν(dt) on IR+, such that:

∫

ν(da)[
λ

θ
− ln(1 + λa)] =

∫

mν(dt)[1 − exp(−λ
2

2
t)].

From Theorem 1.2, the existence of mν is equivalent to the condition:

∫

ν(da) ln(1 + λa) ≤ λ for all λ ≥ 0,

which is equivalent to:
∫

ν(da) a ≤ 1.
Moreover, from Example 5, we can explicitely compute mν. Replacing λ by
λ
θ
, and a by (aθ), we may restrict the discussion to the case: θ = 1.

λ− ln(1 + λa) = a(λ− 1

a
ln(1 + λa)) + (1 − a)λ

= a
∫ ∞

0
ρ1/a(dt)t exp(−λ

2

2
t) + (1 − a)

∫ ∞

0
ρ0(dt)t exp(−λ

2

2
t)

where ρb is defined by (??). Thus,

mν =
∫

ν(da)aρ1/a +
(
∫

ν(da)(1 − a)
)

ρ0. 2

4 Some concluding remarks:

1) In Theorem 1.1, we have mentioned the explicit construction given in
Azéma-Yor [?] to solve Skorohod’s embedding problem. We ask ourselves
whether the previous examples of Section 2 can be constructed with the
help of this explicit construction. More precisely, we consider the affine
decomposition :

T
(law)
= S + (1 − BS)2T
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for any stopping time S ≤ T , with a prescribed distribution µ for BS. The
question is: does the construction of [?] provide a solution (S,BS) with
independence of the two components?
The answer is positive in the case of Example 2. This corresponds to µ the
uniform distribution on [−a, a].Then, Ψµ(x) = x+a

2
and

S := inf{t ≥ 0;St ≥ Ψµ(Bt)} = inf{t ≥ 0; 2St − Bt ≥ a}.

On the other hand, the construction of Azéma-Yor [?] provides an exam-
ple of an affine decomposition (??) with L = e (as in Example 5) but
with no independence property between S and L. Indeed, consider µ(dx) =
exp(−(x + 1))1[−1,∞[(x)dx (see [?], 5.2.b). Then Tµ ≤ T−1 and

T
(law)
= T−1

(law)
= Tµ + (1 +BTµ)2T,

with 1 +BTµ

(law)
= e. In this case , Tµ = inf{t ≥ 0;St − Bt = 1} (law)

= T
(1)
1 the

first hitting time of 1 by a BES(1), i.e.: a reflecting Brownian motion.

2) In close relation with Section 2, we mention the paper [?], where the
authors are looking for stopping times S of the Brownian filtration such that
S and BS are independent. Recall that in Section 2 (Examples 1 and 2), we
are looking for such a time satisfying moreover S ≤ T1 a.s..
We recall a general framework which gives such times. Let (Bt) be a (Ft)
Brownian motion and (Gt) a subfiltration of (Ft). Let (Zt) be a (Gt) Markov
process such that there exists a Markov kernel satisfying:

∀f ≥ 0, E[f(Bt)|Gt] = Kf(Zt). (4.1)

Then, if Ta = inf{t ≥ 0;Zt = a}, Ta and BTa are independent, and the
distribution of BTa is K(a, dx).

Applications:

i) (Gt) = σ(2Ss − Bs; s ≤ t). This is Example 2.

ii) Another example follows from Matsumoto-Yor [?]: (Gt) = σ(Zs; s ≤ t)
with

Zt = exp(−Bt)
∫ t

0
exp(2Bs)ds.

Then for Sz = inf{t ≥ 0;Zt = z}, BSz and Sz are independent. Of
course, in this example, we cannot compare Sz with T1.
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3) In the quoted work of Matsumoto-Yor [?], the study of Z involves a
random quadratic equation :

A
(law)
= zX + AX2 (4.2)

where A
(law)
= 1

2Γµ
(Γµ is a Gamma(µ) variable), z ≥ 0 and X is independent

of A.
For µ = 1/2, (??) admits a unique solution Xz

(law)
= I

(−1/2)
1√
z
, 1√

z

where I
(µ)
a,b denotes

a generalized inverse Gaussian distribution (see [?]).

Since T
(law)
= 1

2Γ1/2
, the pair (S, L) = (zXz, Xz) with Xz

(law)
= I

(−1/2)
1√
z
, 1√

z

provides

a solution to (??). The density of Xz is given by :

f(u) =
1√

2πzu3
exp

(

−(
1

2zu
+

u

2z
) +

1

z

)

.

5 Appendix

We come back to Eq (??):

L(3) (law)
= L(5) + e2T

to connect it with the decomposition:

L(3) =
∫ L(3)

0
ds1

(R
(3)
s ≤1)

+
∫ L(3)

0
ds1

(R
(3)
s ≥1)

.

In this equality, the two terms on the right-hand side are not independent.
Nevertheless, we have:

∫ L(3)

0
ds1

(R
(3)
s ≥1)

(law)
= e2T.

Indeed, by time reversal,

∫ L(3)

0
ds1

(R
(3)
s ≥1)

(law)
=

∫ T1

0
ds1(Bs≤0)

where B is a Brownian motion.
Let A−

t =
∫ t
0 ds1(Bs≤0) and τ denotes the inverse of the local time l0. of B.
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Now, the process (A−
τ(u), u ≥ 0) is independent of L0

T1
and A−

τ(u)

(law)
= T 1

2
u

where Ta is the first hitting time of a by a Brownian motion (see [?, p. 232]).
Therefore,

A−
T1

= A−
τ(L0

T1
)

(law)
= (

1

2
L0

T1
)2T1

(law)
= e2T.

This extends to dimension d as follows:

Proposition 5.1 1) Let d ∈ IN ∗, there exists a random variable X (d) such
that:

L(d) (law)
= L(d+2) +X(d)

with independence of the two variables on the right-hand side.
2) The decomposition

L(d) =
∫ L(d)

0
ds1

(R
(d)
s ≤1)

+
∫ L(d)

0
ds1

(R
(d)
s ≥1)

.

as the sum of two non independent variables satisfies:

∫ L(d)

0
ds1

(R
(d)
s ≥1)

(law)
= X(d) (5.1)

Proof: 1) As in Example 4, we consider a (d+2)-dimensional Brownian mo-
tion B(d+2), which we decompose into (B(d), B(2)). Then, the decomposition

L(d) = L(d+2) + sup{v ≥ 0; |B(d)

L(d+2)+v
| = 1}

provides a decomposition of L(d) in two independent variables. It follows
that:

E[exp(−λ
2

2
X(d))] = 2ν

Kν(λ)

λKν+1(λ)
.

2) (??) holds by identification of the Laplace transform of the two varia-
bles since from [?, (9.n)],

E

[

exp

(

−λ
2

2

∫ L(d)

0
ds1

(R
(d)
s ≥1)

)]

= 2ν
Kν(λ)

λKν+1(λ)
.2
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l’Université Paris VI (1998).

[9] Pitman, J. and Yor, M. Bessel processes and infinitely divisible laws.
In: Stochastic Integrals, ed. D. Williams, Lect. Notes in Maths. 851,
Springer 1981.

[10] Revuz, D. and Yor, M.: Continuous Martingales and Brownian Motion.
2nd edition. Springer, Berlin, 1994.

[11] Roynette, B., Vallois, P. et Yor, M.: On independence cases of time and
position of the Brownian motion. In preparation.

18



[12] Tsilevich, N., Vershik, A. and Yor, M.: Quasi-invariance properties of
the gamma and the Dirichlet processes. In preparation (February 1999).

[13] Vershik, A. and Yor, M. Multiplicativité du processus gamma et
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