© 2004-2006 gbosmis - webpage: www.geocities.com/gbosmis (10/3/2006)

Barriers and Probabilities

We are often interested on the probability that the price of a stock will touch a price barrier or will be above a certain level after a given time period. Geometric Brownian Motion is one of the price models that helps us solve these kind of questions and more. We will start by first giving the answers in such questions. The answers will be given in the form of basic language code. We will then proceed to give a sketchy mathematical proof for these answers.

Let's start by defining the various price levels mentioned in the following formulas. If S_{0} is the current price (at $t=0$) then $\mathrm{K}_{1}, \mathrm{H}$ are two price levels above current price and $\mathrm{K}_{2}, \mathrm{~L}$ are two price levels bellow the current price. The following figure illustrates this relationship.

We will answer these questions

```
> probability at time t the price is below a given barrier
> probability at time t the price is above a given barrier
> probability at some time until t max price is crossing above the
    H - barrier
> probability at any time until t max price is below the H -
    barrier
> probability at some time until t min price is crossing bellow the
    L - barrier
> probability at any time until t min price is above the L -
    barrier
> probability the final price is below the K1 - barrier and max
    price at some time until t is crossing above the H - barrier
> probability the final price is above the K2 - barrier and min
    price at some time until t is crossing below the L - barrier
```


Basic Code Implementation

```
Function snorm(z As Double) as double
    'Cumulative normal distribution function (used in the calculations)
    Dim pi as double
    pi=3.14159265358979
    Dim a1 as double,a2 as double,a3 as double,a4 as double,a5 as
double,k as double,w as double
    a1 = 0.31938153
    a2 = -0.356563782
    a3 = 1.781477937
    a4=-1.821255978
    a5 = 1.330274429
    If 0 > z Then w = -1 Else w = 1
    k = 1 / (1 + 0.2316419 * w * z)
    snorm = 0.5 + w * (0.5 - 1 / Sqr (2 * pi) * Exp(-z ^ 2 / 2) * (al * k
+ a2 * k ^ 2 + a3 * k ^ 3 + a4 * k ^ 4 + a5 * k ^ 5))
End Function
```

```
' ************ Inputs **************
```

' m drift (usually the risk free rate)
' s standard deviation (annualized volatility)
' t time (in years)
' H up barrier
' L down barrier
' K1,K2 barriers
' ST starting price

```
' ************ Formulas ***************
```

' ProbPTBB probability at time t the price is below the barrier
' ProbPTUB probability at time t the price is above the barrier
' ProbMaxPTUB probability at some time until t max price is crossing
above the H - barrier
' ProbMaxPTBB probability at any time until t max price is below the H

- barrier
' ProbMinPTBB probability at some time until t min price is crossing
bellow the L - barrier
' ProbMinPTUB probability at any time until t min price is above the L
- barrier
' ProbFPBBMaxPTUB probability the final price is below the K1 - barrier
and max price at some time until t is crossing above the H - barrier
' ProbFPUBMinPTBB probability the final price is above the K2 - barrier
and min price at some time until t is crossing below the L - barrier

Function ProbPTBB(m as double, s as double, t as double, H as double,
ST as double) as double
Dim MM as double
$\mathrm{MM}=\mathrm{m}-\mathrm{s}^{\wedge} 2 / 2$
ProbPTBB=snorm((log(H/ST)-MM*t)/(s*sqr(t)))
End Function
Function ProbPTUB(m as double, s as double, t as double, H as double, ST as double) as double

Dim MM as double
$M M=m-s^{\wedge} 2 / 2$
ProbPTUB=1-snorm((log(H/ST)-MM*t)/(s*sqr(t)))
End Function

Function ProbMaxPTUB(m as double, s as double, t as double, H as double, ST as double) as double

Dim MM as double
$\mathrm{MM}=\mathrm{m}-\mathrm{s}^{\wedge} 2 / 2$
ProbMaxPTUB=snorm($(-$
$\left.\log (H / S T)+M M * t) /\left(s^{*} \operatorname{sqr}(t)\right)\right)+\left((H / S T)^{\wedge}\left(2 * M M / s^{\wedge} 2\right)\right) * \operatorname{snorm}((-\log (H / S T)-$
MM*t)/(s*sqr(t)))
End Function
Function ProbMaxPTBB(m as double, s as double, t as double, H as double, ST as double) as double

Dim MM as double
$\mathrm{MM}=\mathrm{m}-\mathrm{s}^{\wedge} 2 / 2$
ProbMaxPTBB=1-(snorm ($(-$
$\left.\log (H / S T)+M M * t) /\left(s^{*} \operatorname{sqr}(t)\right)\right)+\left((H / S T)^{\wedge}\left(2 * M M / s^{\wedge} 2\right)\right) * \operatorname{snorm}((-\log (H / S T)-$ MM*t)/(s*sqr(t))))
End Function
Function ProbMinPTBB(m as double, s as double, t as double, L as double, ST as double) as double

Dim MM as double
$M M=m-s^{\wedge} 2 / 2$
ProbMinPTBB=snorm ((log(L/ST) -
$\left.\left.M M^{*} t\right) /\left(s^{*} \operatorname{sqr}(t)\right)\right)+\left((L / S T) \wedge\left(2 * M M / s^{\wedge} 2\right)\right) * \operatorname{snorm}\left((\log (L / S T)+M M * t) /\left(s^{*} \operatorname{sqr}(t)\right)\right.$)
End Function
Function ProbMinPTUB(m as double, s as double, t as double, L as
double, ST as double) as double
Dim MM as double
$M M=m-s^{\wedge} 2 / 2$
ProbMinPTUB=1-(snorm ($(\log (L / S T)-$
$\left.M M * t) /\left(s^{*} \operatorname{sqr}(t)\right)\right)+\left((L / S T) \wedge\left(2 * M M / s^{\wedge} 2\right)\right) * \operatorname{snorm}((\log (L / S T)+M M * t) /(s * \operatorname{sqr}(t))$))
End Function
Function ProbFPBBMaxPTUB(m as double, s as double, t as double, H as double, K1 as double, ST as double) as double

Dim MM as double
$\mathrm{MM}=\mathrm{m}-\mathrm{s}^{\wedge} 2 / 2$
ProbFPBBMaxPTUB $=\left((H / S T) \wedge\left(2 * M M / s^{\wedge} 2\right)\right) \star \operatorname{snorm}((\log (K 1 / S T)-2 \star \log (H / S T)-$
MM*t) /(s*sqr(t)))
End Function
© 2004-2006 gbosmis - webpage: www.geocities.com/gbosmis (10/3/2006)

```
Function ProbFPUBMinPTBB(m as double, s as double, t as double, L as
double, K2 as double, ST as double) as double
    Dim MM as double
    MM=m-s^2/2
    ProbFPUBMinPTBB=((L/ST)^(2*MM/s^2))*snorm((-
log(K2/ST)+2* log(L/ST)+MM*t)/(s*sqr (t)))
End Function
```

Some Arithmetic Results

So	Starting price	100
T	Time	$1($ year $)$
μ	Drift	$0.02(2 \%$ per year $)$
σ	Volatility	$0.3(30 \%$ per year $)$
H	H barrier	130
L	L barrier	75
K1	K1 barrier	110
K2	K2 barrier	90

Event	Formula Result	Monte Carlo Result*
Final price (after 1 year) above H barrier	16.91%	17.05%
Final price (after 1 year) below H barrier	83.09%	82.95%
Probability at some point until T the max Price is crossing above H	35.44%	34.63%
Probability at some point until T the min Price is crossing below L	36.50%	35.59%
Probability at some point until T the max Price is crossing above H and the final price is below K1	7.68%	7.15%
Probability at some point until T the min Price is crossing below L and the final price is above K2	5.80%	5.43%

[^0]
Mathematical Proofs

$d S / S=\mu \cdot d t+\sigma \cdot d z \Rightarrow \ln \left(\frac{S}{S_{0}}\right) \approx N\left[\left(\mu-\frac{\sigma^{2}}{2}\right) \cdot t, \sigma \cdot \sqrt{t}\right] \Rightarrow S(T)=S_{o} \cdot \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) \cdot T+\sigma \cdot \varepsilon \cdot \sqrt{T}\right)$
[1] $\operatorname{Pr} o b\left(S_{T} \leq H\right)=N\left(\frac{\ln \left(\frac{H}{S_{0}}\right)-M \cdot T}{\sigma \cdot \sqrt{T}}\right)$, where $M=\mu-\frac{\sigma^{2}}{2}$
[2] $\quad \operatorname{Prob}\left(\mathrm{S}_{\mathrm{T}}>\mathrm{H}\right)=1-[1]$
[3] Theorem (See Thorp ${ }^{1}$): For standard Brownian motion $\mathrm{X}(\mathrm{t})$
$\operatorname{Pr} o b(\sup [X(t)-(a \cdot t+b)] \geq 0,0 \leq t \leq T)=N(-\alpha-\beta)+e^{-2 a b} \cdot N(\alpha-\beta)$
where $\alpha=a \cdot \sqrt{T}, \beta=\frac{b}{\sqrt{T}}$
[4] $\operatorname{Pr} o b(\max [S(t)] \geq H)=N\left(\frac{M \cdot T-\ln \left(\frac{H}{S_{0}}\right)}{\sigma \cdot \sqrt{T}}\right)+\left(\frac{H}{S_{0}}\right)^{\frac{2 M}{\sigma^{2}}} \cdot N\left(\frac{-M \cdot T-\ln \left(\frac{H}{S_{0}}\right)}{\sigma \cdot \sqrt{T}}\right)$
proof: Use [3]
[5] $\quad \operatorname{Prob}(\max [S(t)]<H)=1-[4]$
[6] $\operatorname{Pr} o b(\min [S(t)] \leq L)=N\left(\frac{-M \cdot T+\ln \left(\frac{L}{S_{0}}\right)}{\sigma \cdot \sqrt{T}}\right)+\left(\frac{L}{S_{0}}\right)^{\frac{2 M}{\sigma^{2}}} \cdot N\left(\frac{M \cdot T+\ln \left(\frac{L}{S_{0}}\right)}{\sigma \cdot \sqrt{T}}\right)$
[7] $\operatorname{Prob}(\min [S(t)]>L)=1-[6]$
[8] For Brownian motion without drift $\mathrm{Y}(\mathrm{t})$:

$$
\operatorname{Pr} o b(Y(T) \leq b, \max [Y(t)] \geq a)=N\left(\frac{b-2 a}{\sigma \cdot \sqrt{T}}\right)
$$

proof: Use the Reflection Principle (see chart bellow)

[^1]

Hence for the Geometric Brownian Motion with Drift the formula becomes:
$\operatorname{Pr} o b\left(S(T) \leq K_{1}, \max [S(t)] \geq H\right)=\left(\frac{H}{S_{0}}\right)^{\frac{2 M}{\sigma^{2}}} \cdot N\left(\frac{\ln \left(\frac{K_{1}}{S_{0}}\right)-2 \cdot \ln \left(\frac{H}{S_{0}}\right)-M \cdot T}{\sigma \cdot \sqrt{T}}\right)$
where $\left(\frac{H}{S_{0}}\right)^{\frac{2 M}{\sigma^{2}}}$ is the correction for the reflection in the barrier and $M \bullet T$ is the correction for the drift.
[9]

$$
\operatorname{Pr} o b\left(S(T) \geq K_{2}, \min [S(t)] \leq L\right)=\left(\frac{L}{S_{0}}\right)^{\frac{2 M}{\sigma^{2}}} \cdot N\left(\frac{-\ln \left(\frac{K_{2}}{S_{0}}\right)+2 \cdot \ln \left(\frac{L}{S_{0}}\right)+M \cdot T}{\sigma \cdot \sqrt{T}}\right)
$$

[10] Using $\mathrm{P}\left(\mathrm{AB}^{\prime}\right)=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{AB})$ we can calculate the following:
i. $\quad \operatorname{Prob}\left(\mathrm{S}(\mathrm{T}) \leq \mathrm{K}_{1}, \max [\mathrm{~S}(\mathrm{t})]<\mathrm{H}\right)=\operatorname{Prob}\left(\mathrm{S}(\mathrm{T}) \leq \mathrm{K}_{1}\right)-\operatorname{Prob}\left(\mathrm{S}(\mathrm{T}) \leq \mathrm{K}_{1}, \max [\mathrm{~S}(\mathrm{t})] \geq \mathrm{H}\right)$
ii. $\quad \operatorname{Prob}\left(S(T) \geq \mathrm{K}_{2}, \min [S(t)]>L\right)=\operatorname{Prob}\left(S(T) \geq \mathrm{K}_{2}\right)-\operatorname{Prob}\left(\mathrm{S}(\mathrm{T}) \geq \mathrm{K}_{2}, \min [\mathrm{~S}(\mathrm{t})] \leq \mathrm{L}\right)$
iii. $\quad \operatorname{Prob}\left(S(T)>\mathrm{K}_{1}, \max [\mathrm{~S}(\mathrm{t})] \geq \mathrm{H}\right)=\operatorname{Prob}(\max [\mathrm{S}(\mathrm{t})] \geq \mathrm{H})-\operatorname{Prob}\left(\mathrm{S}(\mathrm{T}) \leq \mathrm{K}_{1}, \max [\mathrm{~S}(\mathrm{t})] \geq \mathrm{H}\right)$
iv. $\quad \operatorname{Prob}\left(\mathrm{S}(\mathrm{T})>\mathrm{K}_{1}, \max [\mathrm{~S}(\mathrm{t})]<\mathrm{H}\right)=\operatorname{Prob}(\max [\mathrm{S}(\mathrm{t})]<\mathrm{H})-\operatorname{Prob}\left(\mathrm{S}(\mathrm{T}) \leq \mathrm{K}_{1}, \max [\mathrm{~S}(\mathrm{t})]<\mathrm{H}\right)$
v. $\quad \operatorname{Prob}\left(\mathrm{S}(\mathrm{T})<\mathrm{K}_{2}, \min [\mathrm{~S}(\mathrm{t})] \leq \mathrm{L}\right)=\operatorname{Prob}(\min [\mathrm{S}(\mathrm{t})] \leq \mathrm{L})-\operatorname{Prob}\left(\mathrm{S}(\mathrm{T}) \geq \mathrm{K}_{2}, \min [\mathrm{~S}(\mathrm{t})] \leq \mathrm{L}\right)$
vi. $\quad \operatorname{Prob}\left(S(T)<\mathrm{K}_{2}, \min [\mathrm{~S}(\mathrm{t})]>\mathrm{L}\right)=\operatorname{Prob}(\min [\mathrm{S}(\mathrm{t})]>\mathrm{L})-\operatorname{Prob}\left(\mathrm{S}(\mathrm{T}) \geq \mathrm{K}_{2}, \min [\mathrm{~S}(\mathrm{t})]>\mathrm{L}\right)$

[^0]: * Monte Carlo results after 100000 Iterations. Time T was divided into 1000 time steps.

[^1]: ${ }^{1}$ Ed Thorp - "The Kelly criterion in blackjack, sports betting, and the stock market", 10th International Conference on Gambling and Risk Taking.

