

OUTLINE:

I GOVERNMENT

A Government Spending
B Taxation
C Budget
D Provincial and Municipal Governments

II NET EXPORTS

A Net Export Function
B Shifts in NX Function

III EQUILIBRIUM NATIONAL INCOME

A AE
B Determining Equlibrium
IV CHANGES IN NATIONAL INCOME
A The Simple Multiplier
B NX

V FISCAL POLICY

I GOVERNMENT

A Government Spending

1. Remember, \mathbf{P} are held constant
2. Fiscal Policy = use of G/T to affect Ye
3. G affects AE directly; T affects AE indirectly through Yd and C
4. Remember, G is exclusive of Transfer Payments
5. Transfer Payments increase Yd

B Taxation

1. Taxes decrease Yd; Transfer Payments increase Yd
2. $\mathrm{Yd}=\mathrm{Y}-$ (Net Taxes), where Net Taxes $=\mathrm{T}-\mathrm{TP}$
3. Usually, we just call net taxes, taxes, and define

$$
\mathrm{Yd}=\mathrm{Y}-\mathrm{T}
$$

4. In most cases, T are income taxes: $T=f(Y)$

C Budget

1. Budget $=\mathbf{T}$ - G $=$ Gov't Revenues - Gov't Expend.
2. Budget Surplus $=\mathrm{T}-\mathrm{G}>0$ ie. Revenues $>$ Expend. Budget Deficit $=\mathrm{T}-\mathrm{G}<0$ ie. Expend. $>$ Revenues Balanced Budget $=\mathrm{T}-\mathrm{G}=0$ ie Revenues $=$ Expend .
3. Public Savings = Budget Surplus
4.

Taxes T	induced	$\mathrm{T}=\mathrm{f}(\mathrm{Y})$
Gov't Expend G	autonomous	$\mathrm{G}=\underline{\mathrm{G}}$

Budget Fn: $\quad(\mathrm{T}-\mathrm{G})=\mathrm{f}(\mathrm{Y})=\$ \mathrm{IN}-\$ \mathrm{OUT}$

D Provincial and Municipal Governments

1. Federal Government

- taxes about equal to (Prov + Mun.) taxes
- G purchases less than (Prov + Mun) purchases - Fed spends more on Transfer Payments

2. 解 G and T in the NIEA include all three levels of Gov't

II NET EXPORTS

A Net Export Function

1. $\mathrm{NX}=\mathrm{X}-\mathrm{M}=\mathrm{BOT}$
(Balance of Trade)
2. BOT Surplus $=X-M>0 ; \quad \$$ in $>\$$ out BOT Deficit $=\mathrm{X}-\mathrm{M}<0 ;$ \$out $>$ \$in BOT $\quad=\mathrm{X}-\mathrm{M}=0 ; \quad \$$ in $=\$$ out
3.

| Exports X | autonomous | $\mathrm{X}=\underline{\mathrm{X}}$ |
| :--- | :--- | :--- | :--- |
| Imports M | induced | $\mathrm{M}=\mathrm{f}(\mathrm{Y})$ |

4.

B Shifts in NX Function

甠 rel. Cdn P rise IF rel. Cdn inflation high OR ev rises

Exogenou Cause	Effect on X	Effect on M	Effect on NX	Effect on Ye
relative Cdn P's				
ev of Cdn\$				
relative Cdn P's				
ev of Cdn\$				

Example: rise in rel. Cdn P and/or rise in ev

III EQUILIBRIUM NATIONAL INCOME

A Aggregate Expenditure

1. Remember: $\mathrm{C}=\mathrm{f}(\mathrm{Yd})$, where $\mathrm{Yd}=\mathrm{Y}-\mathrm{T}$

Substitute: $\mathrm{Yd}=\mathrm{Y}-\mathrm{T}$ into above equation, Therefore, $\mathrm{C}=\mathrm{f}(\mathrm{Y})$ also
2. 四 DESIRED $\mathrm{AE}=\mathrm{f}(\mathrm{ACTUAL} \mathrm{Y})$
3. $\mathbf{A E}=\mathbf{C}+\mathbf{I}+\mathbf{G}+\mathbf{N X}$
4. MPSpend $=$ slope of AE function $=$ addition inclination to spend out of an additional dollar of national income (Don't confuse with MPS = marginal prop. to save)
5. Out of an additional dollar of Y ,

MPSpend $=\mathrm{z}=\mathrm{MPC}(1-\mathrm{MPT})-\mathrm{MPM}=\mathrm{b}(1-\mathrm{t})-\mathrm{m}$
Eg. If: $\mathrm{C}=10+0.8 \mathbf{Y} \underline{\mathbf{d}}$
Just Yd
I = 25
$\mathrm{G}=17$
$\mathrm{NX}=24-0.1 \mathrm{Y}$
Y, not Yd
$\mathrm{T}=0.1 \mathbf{Y}$

If $\mathrm{b}=0.8, \mathrm{t}=0.1, \mathrm{~m}=0.1$, then MPSpend $=0.62$

SEE APPENDIX FOR ALGEBRA.

B Determining Equilibrium: GOV'D ECONOMY

1. Decision Makers: Household (H), Firm (F), Gov’t (G)
2. General Premise: H saves some income at Bank; Bank loans some savings to \mathbf{F} for investments; \mathbf{G} taxes and spends

3. Garden Hose Theory:

B Determining Equilibrium: OPEN ECONOMY

1. Decision Makers: House(H), Firm (F), Gov’t (G), NX
2. General Premise: H saves some income at B; B loans some savings to \mathbf{F} for investments; \mathbf{G} taxes and spends; W - domestic buys M , foreign country buys X

3. Garden Hose Theory:

IV CHANGES IN NATIONAL INCOME

A The Simple Multiplier

1. Taxes and net exports REDUCE the value of k, the multiplier.
2. Reason: T and NX are directly related to Y , so as Y increases, the withdrawals or leakages increase from the circular flow
3. Simple Multiplier $=\mathrm{k}=1 / 1-\mathrm{z}$, where $\mathrm{z}=$ MPSpend
4. In the Frugal Economy, $\mathrm{z}=\mathrm{MPC}$
5. Now, with G and $N X, z=b(1-t)-m$

B NX

1. NX affected exogenously by the affect of foreign Y on X.
2. NX affected endogenously by the affect of domestic Y on M.
3. Because M are subtracted from X to get NX , the marginal propensity to import, m , is subtracted from the MPSpend and the simple multiplier.

V FISCAL POLICY

1. Fiscal Policy $=$ Change in G and/or T to affect Ye
2. Stabilization Policy = gov't policy to maintain Y at a given level (usually potential GDP)
3. Increase $\mathrm{G} /$ decrease T Increases Ye Decrease G/ increase T Decrease Ye
4. Balanced Budget Multiplier
$\Delta \mathrm{Ye}=\Delta \mathrm{Gx}\left(1+\mathrm{MPC}+\mathrm{MPC}^{2}+\ldots\right)=\Delta \mathrm{G} . \mathrm{k}$
$\Delta \mathrm{Ye}=\Delta \mathrm{T} \times\left(\quad \mathrm{MPC}+\mathrm{MPC}^{2}+\ldots\right)=\Delta \mathrm{T}(\mathrm{k}-1)$
Thus, for a balanced budget, $\Delta \mathrm{G}=\Delta \mathrm{T}$
$\Delta \mathrm{Ybb}=\Delta \mathrm{G}=\Delta \mathrm{T}$

BUDGET FN v. ADDITION TO AE

1. Budget Function $=(\mathrm{T}-\mathrm{G})$
$=(\$$ in $-\$$ out $)$ TO THE GOV'T

* Remember, its \$ in and out of the GOVERNMENT

2. Additions to $\mathbf{A E}=(\mathrm{G}-\mathrm{T}) *$ switched
$=(\$$ in $-\$$ out $)$ to CIRCULAR FLW

* Remember, its \$ in and out of the CIRCULAR FLOW

PARALLEL: (G-T) AND (X-M)

(G-T) Governed Economy (X-M) Open Economy

Withdrawals

Taxes

Imports

Injections
G Expenditures

Net Addition to AE (G-T)

Algebra: Concordance of $\mathbf{W}=\mathbf{J}$ and $\mathbf{Y}=\mathbf{E}$

1. Frugal Economy
$\mathrm{Y}=\mathrm{C}+\mathrm{I}$ (condition) $\quad \mathrm{Y}=\mathrm{C}+\mathrm{S}($ defn $)$ equating, $\mathrm{S}=\mathrm{I}$
or
$\mathrm{Y}=(\mathrm{Y}-\mathrm{S})+\mathrm{I}=\mathrm{Y}+(\mathrm{I}-\mathrm{S}) \quad(\mathrm{J}-\mathrm{W})$
2. Governed Economy
$\mathrm{Y}=\mathrm{C}+\mathrm{I}+\mathrm{G}$ (condition) $\mathrm{Y}=\mathrm{C}+\mathrm{S}+\mathrm{T}$ (defn) equating $\mathrm{S}+\mathrm{T}=\mathrm{I}+\mathrm{G}$
or
$\mathrm{Y}=(\mathrm{Y}-\mathrm{T}-\mathrm{S})+\mathrm{I}+\mathrm{G}=\mathrm{Y}+(\mathrm{I}-\mathrm{S})+(\mathrm{G}-\mathrm{T}) \quad(\mathrm{J}-\mathrm{W})$
3. Open Economy
$\mathrm{Y}=\mathrm{C}+\mathrm{I}+\mathrm{G}+(\mathrm{X}-\mathrm{M})$ (condition) $\mathrm{Y}=\mathrm{C}+\mathrm{S}+\mathrm{T}$ (defn)
equating $\mathrm{S}+\mathrm{T}+\mathrm{M}=\mathrm{I}+\mathrm{G}+\mathrm{X}$
or
$\mathrm{Y}=(\mathrm{Y}-\mathrm{T}-\mathrm{S})+\mathrm{I}+\mathrm{G}+(\mathrm{X}-\mathrm{M})=\mathrm{Y}+(\mathrm{I}-\mathrm{S})+(\mathrm{G}-\mathrm{T})+$ (X-M) (J - W)

Summary

1. All injections are autonomous

2. All withdrawals are a fn of \mathbf{Y}

