
Title: DISTRIBUTED COMPUTING USING JINI -Synopsis
Author: Elango Sundaram

Abstract: A standardized distributed computational model, which will have feature sets to
lookup, discover and use network resources in a dynamic, secure, robust, and reliable fashion
enabling network-to-network and participant-to-participant communication is much needed. The
networks and computational entities could be inherently unreliable and heterogeneous; spanning
various operating systems, network architectures, computational power, load, storage, service
capabilities and other implementation and administration details. Systems have to minimize down
time, administration, and maximize reliability and interchangeability. JINI is a technology from
Sun Microsystems in an effort to enable the above.

1.Introduction:
JINI offers a federated, distributed computational model where a service of some kind can
publish itself, look up for other services, request, authenticate, authorize and use other services in
fulfilling a need by another service or a person. JINI is enabled and based on Java and to be used
requires a JVM and the Java Byte Codes. JINI builds up on the Java RMI architecture for
communication and transfer of message and data; so bound by Java Specification and Java RMI
Specification at the application level. The members on a federation can decide on kind of rights to
resource and identification. The systems are built with the services as the building blocks. A
service may be of any kind based on inherent capabilities.

2. JINI Overview:
The JINI system could be said to consist of following parts a) components that provide support
for federating services in a distributed environment. b) Programming model to develop reliable
systems. c) Services that could be made part of the federation and could be made to offer services
to other members of the federation. The overall goal of the system is to turn the network into a
flexible, easily administrable tool on which resources and services could be found by the human
and computer clients. The resources could be hardware or software or computation facilitators
etc. The overall goals are the following a) Enabling users to access and share resources from the
network b) Providing access from any part of the network so that the provider could change
location c) simplification of the task of building, maintaining, altering of network services.

The JINI environment provides for a dynamic creation of service, which could decide to join the
network. Once it registers then it becomes available for the others to access. The service could
provide security restrictions, lease time variations etc. The JINI system federates computes and
the computing devices to something that appears as a single system to the user.

The basic unit of a JINI system is a service. A person, program or another service could use a
service. A service may be a computational resource, hardware, software etc. A JINI system
consists of services that could work together to achieve a task. Examples of a service could be
traffic signal that is JINI enabled, a weather monitoring unit an air quality monitoring unit etc.
And an example of a service usage could be one traffic monitoring system requesting another for
traffic density. Another usage could be a JINI mobile weather monitoring unit discovering nearby
weather monitoring units and requesting data on temperature, humidity etc.

 1

Fig 1 Overview of JINI service and JINI Client

The services in a JINI system are found and resolved by a central bootstrapping mechanism
called the lookup service. A look up service can provide and map the information requested by
the client with the ones available in the server. In other words, the look up service could give
proxies that were provided by the services during registration to the client. Also its possible to
provide for a description of a requested service during the request. A service becomes eligible to
be found by doing two things a) discovery and b)join. The service will first do discovery and find
the desired lookup server. After the lookup service is found, it could register itself through the
join process.

The discovery and join process could be represented as follows (refer Fig 1). The service A and
Service B are the services that wish to offer their services to the federation. In order to do so they
first find out the LUS (Look up server) they wish to register with. Once they find the look up
server, they register with it by informing it of their presence and giving it service attributes and
proxy object. The service attributes refers to a set of parameters that could be used to find out a
specific service; the service attribute could be as simple as a name or could be an object with a
collection of parameters. The client who wishes to use a service finds the look up service first.
Once a look up server is found, the look up server could be asked if it contains a service with
some desired parameters. Assuming that the client requests service A, the look up server would
return the proxy for the server for service A. After this the client could establish direct
communication with the service A.

 2

The JINI architecture uses Java Remote Method Invocation (RMI) for the purpose of
communication. This means that the code downloading features of the RMI could be used. The
client that requested the service A could get the Stub of the Server A RMI. After obtaining this
stub, the client could make calls to the Server A methods, as if it were local method calls. All the
features of RMI are available through JINI. The objects that need to be transferred between JINI
networks need to be Serializable as in the RMI environment. Also a Java policy file could be set
up at the client and at the server to set up permissions for the downloaded code. The typical
security limitations could be the disk areas that the downloaded code could access, the kinds of
permissions for the disk areas (like read, write, read-write) and the network resources it can
access. A method dispatched by RMI may or may not execute in a separate thread. So the objects
used in RMI need to be thread safe. To ensure garbage collection, RMI runtime keeps track of all
references. The references are kept track by using a reference tracking counter. When all the
references are discarded, an “unreferenced” message is sent to the server. When an object
becomes completely unreferenced, then it becomes eligible for garbage collection. The JINI
system additionally has the leasing mechanism, which reduces the possibility of any stale
references in the system.

Each entity in a JINI network is a service also called djinn. A service is capable identifying and
being identified by other services. An entity, when it starts up sends a proxy object to all the
desired look up services by the process of discovery. The proxy is a Java object that could act as a
publisher of the capabilities of the corresponding service. The services are based on the concept
of lease. A service may be used based on the time period of the lease and the leased resource may
be exclusive or non-exclusive (possibility of parallel or concurrent access). On the time out, the
lease may or may not be renewed; on the latter case the resource is freed up. Wrapping a series of
operations can create transactions. The event notification and handling can also supported in JINI
architecture.

3. Discovery and Join in JINI:
The services that wish to participate in a JINI network also called djinns must have to obtain
references to one or more look up services. A service has to use discovery mechanism to discover
the reference to the look up service. Some of the terms used in the discovery and join part are as
follows:

• A host refers to a single hardware connected to network, which may contain one or more Java

Virtual Machines. A host that wishes to participate in a djinn need to have a JVM with all
needed classes and a proper network protocol stack. If assuming IP is used for
communication, then the host should have an IP address, support for unicast TCP and
multicast UDP. The host also needs to provide for some kind of a mechanism like an HTTP
server to enable automatic downloading of Java code.

• A discovering entity is the one which is planning to obtain references to one or more look up
services

• A joining entity is the one that has a reference to a look up service and in the process of using
other services or wanting to make others use its services

• An entity may be a discovering or a joining entity or a member of djinn.
• A group is a logical name for a collection of djinns. The group is an arbitrary string that’s

used as a name. Each look up service has a set of zero or many groups bound to it. The clients
that would like to get a service could look for a look up service that contains the needed
group.

 3

Three kinds of discovery protocols used in JINI are the a) Multicast Request Protocol: This could
be used to find look up services on LAN. The entities could use this to discovery neighboring
look up services. b) Multicast Announcement Protocol: This is used to announce presence of a
look up server on the network. c) Unicast Discovery Protocol: This is used for finding specific
lookup in a WAN or for long use static situations.

4. Multicast Request Protocol:
Each entity that wishes to discover a djinn uses a multicast request service and a look up server
uses multi cast response service. On the requesting side (say a JINI client) are the a) multicast
request client that performs multicasts to discover nearby lookup services and b) multicast
response server that listens for responses from those lookup services. Zero to many of these pairs
could be existing in a single JVM. On the look up server side are the a) multicast request server
that listens for incoming multicast requests and b) multicast response client that responds to
callers. This client passes each requester a proxy that they can use to communicate with lookup
service. The multicast request service is based on the multicast datagram facility of the network.
In TCP/IP environment multicast UDP is used. (This is the reason a host has to be properly
network configured with multicast datagram facility to enable discovery). The multicast response
service is based on normal TCP/IP. The source IP address and port are obtained from the request
and a unicast discovery is done. The multicast packet consists of the protocol version, port to
connect to, count of heard look-ups (for which no response needs to be done), count of groups
and the array of groups. The Multicast Request Protocol is briefly depicted in the following
picture.

Fig 2 Multicast Request Protocol

5. Multicast Announcement Protocol:
The multicast Announcement protocol is used by the look up services to announce their presence
to the network. The announcement will be done to the entities in the multicast span. The
Multicast Announcement Protocol consists of two parts; the multicast announcement service and

 4

the multicast announcement client. The multicast announcement service resides in every entity
that wishes to be notified and the multicast announcement clients are present the look up server
that makes the announcement. The multicast announcement client is alive as long as the lookup
server. The multicast announcement uses of multicast announcement packets which consist of the
protocol version, host address for unicast discovery, port no, service ID or the originator, group
count and the groups in originator. The multicast announcement protocol works like the
following:

At the lookup server
• Create datagram socket object
• Make server side for the unicast discovery object
• Multicast announcement packets at intervals

At the listening entity
• Set up a list of known(previously heard entities)
• Bind datagram socket and listen for the multicast announcement
• On receipt of announcement check if the Service ID is already present; if not then perform

unicast discovery and obtain reference server. Add the service ID to the set of known look up
servers.

Fig 3 Multicast Announcement Protocol

7. Unicast Discovery:
The Unicast discovery protocol has a request and response and is used where the address of host
is known and in situations where hosts are in a wide area network. The initiator sends a unicast
request. The unicast server could respond by sending unicast response.

 5

8. Join protocol:
The join protocol defines the sequence of steps that should be performed during the registration
process. When the service starts up, it waits for a random time so as to prevent a packet flood
during instances like power failure and system starts up. For each member of the group that the
service needs to join, the service performs an unicast discovery and joins them. If the set of
groups to be joined is empty, then a service does a multicast discovery and joins with each
member that announces itself to be a member of the group that the service should join.

9. Distributed Leasing:
The term lease refers to the use of resources of a grantor by the holder. JINI uses the distributed
leasing method to simplify the concept of resource allocation and standardized way of acquiring
and canceling resources. The grantor and the holder could negotiate the terms of the lease in a
standardized way. The distributed systems could tend to accumulate and gather up the unwanted
information and dead resource data. The goals for the leasing system are a) to simplify time based
resource allocation b) standardized acquiring and cancellation of resource c) Standard interfaces
for programming. The characteristics of the JINI leasing system are:

• During the lease duration the grantor tries best to make the resource available for
holder. The time period is negotiable and could be implemented based on application
constraints

• Holder can cancel the lease during lease period.
• Holder could request lease renewal once again negotiable time period
• Lease could expire and no communication is needed on that. If a lease were not

renewed after lease duration, then it would expire.

The lease is granted as absolute time duration rather that on clock times. This system is
designed to avoid synchronization issues in distributed systems.

10. Distributed Events:
Distributed Event Notification refers to object in one machine showing interest and registering
with another machine to get notified on a certain event happening in that machine. Distributed
notification involves certain characteristics different form a single machine in the way of message
delays, loss, transmission and request schedule and may other parameters. The Event notification
is based on distributed lease model so that the notification is not for ever but time bound. The
JINI distributed event notification aims at providing the following features:

a) Standard way (interface) to send notification
b) Specification of kind of information on the notification
c) Various degree of assurance for notification
d) Support different scheduling policies

The notion of event listener refers to the object that gets to receive the notification of the
occurrence of an event. The event generator is the entity that could generate an event. The remote
event is the entity that would be passed around as a reference to the event. The JINI event
mechanism allows for third party event system enhancers like store-and-forward agent,
notification filters etc.

11. Entries:
In the JINI system entries are used to do exact match up of objects in the distributed environment.
Three types of operations are supported by the services that support entries. Thy are a) the store

 6

operation that stores up entries b) the match operation that matches entries and c) the fetch
operation that fetches the entries.

12. Distributed Transactions:
Distributed Transaction refers to grouped execution of operations, which can roll back and ensure
ACID (atomicity, consistency, isolation and durability) properties in a distributed environment.
The atomicity of a distributed transaction refers to complete success of all operations required in
transaction in all different machines involved or a complete roll back in states of all the machines
involved in the transaction. The consistency refers to the fact that the transaction should leave all
participant machines in a consistent state. The isolation of a distributed transaction refers to the
fact that the execution of distributed transaction should not be affected by intermediate states of
other transactions. The durability of transaction refers to all participant machines are able persist
their results. The distributed transactions are more difficult to implement that a single machine
transaction as they have to take care of network latencies, availability of CPU cycles on different
machines etc.

Two-phase commit protocol is used to ensure Distributed Transaction in JINI. In this, a manager
will check the votes for participants. The votes may be prepared, not changed (read-only), or
aborted. On a prepared or read-only vote from all participants, the manager will ask all
participants to commit the transaction. In the event of even one participant failure, the whole
transaction will be aborted.

A JINI transaction should make sure that the execution of sibling transactions concurrently, is
same as executing them in order. Two phase locking is used to ensure this serializability. The
resources are obtained using locks. The transaction that wishes to use a shared resource has to
first acquire lock for the resource. The lock is released on completion of the resource. The locks
could be read locks, write locks etc. The deadlocks in transaction are not guaranteed to be
prevented or detected; but managers and participants are allowed to abort in order to break dead
locks. There is also a possibility of orphan transactions. The orphans are transactions, whose
ancestors are aborted. The JINI system cannot detect orphan transactions.

Disclaimer: The contents of this document have been developed with intent to disseminate knowledge and information.
The user is expected to show discretion and care in its use. The author shall not be accountable for unexpected results
or damage.

 7

Author: Elango Sundaram
www.geocities.com/esundara

 8

http://www.geocities.com/esundara

	2. JINI Overview:
	3. Discovery and Join in JINI:
	4. Multicast Request Protocol:
	5. Multicast Announcement Protocol:
	7. Unicast Discovery:
	8. Join protocol:
	9. Distributed Leasing:
	10. Distributed Events:
	11. Entries:
	12. Distributed Transactions:

