BT & MS

         Modern Bio Technology

Biotechnology means any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use." Before the 1970s, the term, biotechnology, was primarily used in the food processing and agriculture industries. Since the 1970s, it began to be used by the Western scientific establishment to refer to laboratory-based techniques being developed in biological research,

such as recombinant DNA or tissue culture-based processes. In fact, the term should be used in a much broader sense to describe the whole range of methods, both ancient and modern, used to manipulate organic matter to meet human needs. So the term can be defined as, "The application of indigenous and/or scientific knowledge to the management of (parts of) microorganisms, or of cells and tissues of higher organisms, so that these supply goods and services of use to human beings,There has been a great deal of talk - and money - poured into biotechnology with the hope that miracle drugs will appear. While there do seem to be a small number of efficacious drugs, in general the biotech revolution has not happened in the pharmaceutical sector. However, recent progress with monoclonal antibody based drugs, such as Genentech's Avastin (tm) suggest that biotech may finally have found a role in pharmaceutical sales.Biotechnology combines disciplines like genetics, molecular biology, biochemistry, embryology and cell biology, which are in turn linked to practical disciplines like chemical engineering, information technology, and robotics.Biotechnology has applications in four major industrial areas, including health care, crop production and agriculture, non food uses of crops (e.g. biodegradable plastics, vegetable oil, biofuels), and environmental uses. For example, one application of biotechnology is the directed use of organisms for the manufacture of organic products (examples include beer and milk products). Another example is using naturally present bacteria by the mining industry in bioleaching. Biotechnology is also used to recycle, treat waste, clean up sites contaminated by industrial activities (bioremediation), and produce biological weapons.Red biotechnology is applied to medical processes. Some examples are the designing of organisms to produce antibiotics, and the engineering of genetic cures through genomic manipulation. White biotechnology also known as grey biotechnology, is biotechnology applied to industrial processes. An example is the designing of an organism to produce a useful chemical. Another example is the using of enzymes as industrial catalysts to either produce valuable chemicals or destroy.


          Bio Technology Oriended Concepts

RNA interference RNA interference (also called "RNA-mediated interference", abbreviated RNAi) is a mechanism for RNA-guided regulation of gene expression in which double-stranded ribonucleic acid inhibits the expression of genes with complementary nucleotide sequences. Conserved in most eukaryotic organisms, the RNAi pathway is thought to have evolved as a form of innate immunity against viruses and also plays a major role in regulating development and genome maintenance.The RNAi pathway is initiated by the enzyme dicer, which cleaves double-stranded RNA (dsRNA) to short double-stranded fragments of 20–25 base pairs. One of the two strands of each fragment, known as the guide strand, is then incorporated into the RNA-induced silencing complex (RISC) and base-pairs with complementary sequences. The most well-studied outcome of this recognition event is a form of post-transcriptional gene silencing. This occurs when the guide strand base pairs with a messenger RNA (mRNA) molecule and induces degradation of the mRNA by argonaute, the catalytic component of the RISC complex. The short RNA fragments are known as small interfering RNA (siRNA) when they derive from exogenous sources and microRNA (miRNA) when they are produced from RNA-coding genes in the cell's own genome. The RNAi pathway has been particularly well-studied in certain model organisms such as the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the flowering plant Arabidopsis thaliana. The selective and robust effect of RNAi on gene expression makes it a valuable research tool, both in cell culture and in living organisms; synthetic dsRNA introduced into cells can induce suppression of specific genes of interest. RNAi may also be used for large-scale screens that systematically shut down each gene in the cell, which can help identify the components necessary for a particular cellular process or an event such as cell division. Exploitation of the pathway is also a promising tool in biotechnology medicine.Historically, RNA interference was known by other names, including post transcriptional gene silencing, transgene silencing, and quelling. Only after these apparently-unrelated processes were fully understood did it become clear that they all described the RNAi phenomenon. RNAi has also been confused with antisense suppression of gene expression, which does not act catalytically to degrade mRNA but instead involves single-stranded RNA fragments physically binding to mRNA and blocking translation. In 2006, Andrew Fire and Craig C. Mello shared the Nobel Prize in Physiology or Medicine for their work on RNA interference in the nematode worm C. elegans, which they published in 1998.RNA interference (also called "RNA-mediated interference", abbreviated RNAi) is a mechanism for RNA-guided regulation of gene expression in which double-stranded ribonucleic acid inhibits the expression of genes with complementary nucleotide sequences. Conserved in most ukaryotic organisms, the RNAi pathway is thought to have evolved as a form of innate immunity against viruses and also plays a major role in regulating development and genome maintenance.

          Biological functions

RNA interference is a vital part of the immune response to viruses and other foreign genetic material, especially in plants where it may also prevent self-propagation by transposons. Plants such as Arabidopsis thaliana express multiple dicer homologs that are specialized to react differently when the plant is exposed to different types of viruses.Even before the RNAi pathway was fully understood, it was known that induced gene silencing in plants could spread throughout the plant in a systemic effect, and could be transferred from stock to scion plants via grafting. This phenomenon has since been recognized as a feature of the plant innate immune system, and allows the entire plant to respond to a virus after an initial localized encounter. In response, many plant viruses have evolved elaborate mechanisms that suppress the RNAi response in plant cells. These include viral proteins that bind short double-stranded RNA fragments with single-stranded overhang ends, such as those produced by the action of dicer. Some plant genomes also express endogenous siRNAs in response to infection by specific types of bacteria. These effects may be part of a generalized response to pathogens that downregulates any metabolic processes in the host that aid the infection process.Although animals generally express fewer variants of the dicer enzyme than plants, RNAi in some animals has also been shown to produce an antiviral response. In both juvenile and adult Drosophila, RNA interference is important in antiviral innate immunity and is active against pathogens such as Drosophila X virus. A similar role in immunity may operate in C. elegans, as argonaute proteins are upregulated in response to viruses and worms that overexpress components of the RNAi pathway are resistant to viral infection. The role of RNA interference in mammalian innate immunity is poorly understood, and relatively little data is available. However, the existence of viruses that encode genes able to suppress the RNAi response in mammalian cells may be evidence in favour of an RNAi-dependent mammalian immune response. However, this hypothesis of RNAi-mediated immunity in mammals has been challenged as poorly substantiated Alternative functions for RNAi in mammalian viruses also exist, such as miRNAs expressed by the herpes virus that may act as heterochromatin organization triggers to mediate viral latency.

         Genome maintenance

Components of the RNA interference pathway are used in many eukaryotes in the maintenance of the organisation and structure of their genomes. Modification of histones and associated induction of heterochromatin formation serves to downregulate genes pre-transcriptionally; this process is referred to as RNA-induced transcriptional silencing (RITS), and is carried out by a complex of proteins called the RITS complex. In fission yeast this complex contains argonaute, a chromodomain protein Chp1, and a protein called Tas3 of unknown function.As a consequence, the induction and spread of heterochromatic regions requires the argonaute and RdRP proteins.Indeed, deletion of these genes in the fission yeast S. pombe disrupts histone methylation and centromere formation,causing slow or stalled anaphase during cell division.The mechanism by which the RITS complex induces heterochromatin formation and organization is not well understood, and most studies have focused on the mating-type region in fission yeast, which may not be representative of activities in other genomic regions or organisms. In maintenance of existing heterochromatin regions, RITS forms a complex with siRNAs complementary to the local genes and stably binds local methylated histones, acting co-transcriptionally to degrade any nascent pre-mRNA transcripts that are initiated by RNA polymerase. The formation of such a heterochromatin region, though not its maintenance, is dicer-dependent, presumably because dicer is required to generate the initial complement of siRNAs that target subsequent transcripts.Heterochromatin maintenance has been suggested to function as a self-reinforcing feedback loop, as new siRNAs are formed from the occasional nascent transcripts by RdRP for incorporation into local RITS complexes.The relevance of observations from fission yeast mating-type regions and centromeres to mammals is not clear, as heterochromatin maintenance in mammalian cells may be independent of the components of the RNAi pathway.miRNAs and gene regulation Endogenously expressed miRNAs, including both intronic and intergenic miRNAs, are most important in translational repression and in the regulation of development, especially the timing of morphogenesis and the maintenance of undifferentiated or incompletely differentiated cell types such as stem cells. The role of endogenously expressed miRNA in downregulating gene expression was first described in C. elegans in 1993. In plants this function was discovered when the "JAW microRNA" of Arabidopsis was shown to be involved in the regulation of several genes that control plant shape. In plants, the majority of genes regulated by miRNAs are transcription factors; thus miRNA activity is particularly wide-ranging and regulated entire gene networks during development by modulating the expression of key regulatory genes, including transcription factors as well as F-box proteins.In many organisms, including humans, miRNAs have also been linked to the formation of tumors and ysregulation of the cell cycle. Here, miRNAs can function as both oncogenes and tumor suppressors.

         Genral Process RNA

The RNAi pathway is initiated by the enzyme dicer, which cleaves double-stranded RNA (dsRNA) to short double-stranded fragments of 20–25 base pairs. One of the two strands of each fragment, known as the guide strand, is then incorporated into the RNA-induced silencing complex (RISC) and base-pairs with complementary sequences. The most well-studied outcome of this recognition event is a form of post-transcriptional gene silencing. This occurs when the guide strand base pairs with a messenger RNA (mRNA) molecule and induces degradation of the mRNA by argonaute, the catalytic component of the RISC complex. The short RNA fragments are known as small interfering RNA (siRNA) when they derive from exogenous sources and microRNA (miRNA) when they are produced from RNA-coding genes in the cell's own genome. The RNAi pathway has been particularly ell-studied in certain model organisms such as the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the flowering plant Arabidopsis thaliana.The selective and robust effect of RNAi on gene expression makes it a valuable research tool, both in cell culture and in living organisms; synthetic dsRNA introduced into cells can induce suppression of specific genes of interest. RNAi may also be used for large-scale screens that systematically shut down each gene in the cell, which can help identify the components necessary for a particular cellular process or an event such as cell division. Exploitation of the pathway is also a promising tool in biotechnology and medicine.Historically, RNA interference was known by other names, including post transcriptional gene silencing, transgene silencing, and quelling. Only after these apparently-unrelated processes were fully understood did it become clear that they all described the RNAi phenomenon. RNAi has also been confused with antisense suppression of gene expression, which does not act catalytically to degrade mRNA but instead involves single-stranded RNA fragments physically binding to mRNA and blocking translation. In 2006, Andrew Fire and Craig C. Mello shared the Nobel Prize in Physiology or Medicine for their work on RNA interference in the nematode worm C. elegans, which they published in 1998.RISC activation and catalysis The catalytically-active components of the RISC complex are endonucleases called argonaute proteins, which cleave the target mRNA strand complementary to their bound siRNA. As the fragments produced by dicer are double-stranded, they could each in theory produce a functional siRNA. However, only one of the two strands, which known as the guide strand, binds the argonaute protein and directs gene silencing. The other anti-guide strand or passenger strand is degraded during RISC activation.Although it was first believed that an ATP-dependent helicase separated these two strands the process is actually ATP-independent and performed directly by the protein components of RISC.The strand selected as the guide tends to be that with a more stable 5' end, but strand selection is unaffected by the direction in which dicer cleaves the dsRNA before RISC incorporation.Instead, the R2D2 protein may serve as the differentiating factor by binding the less-stable 5' end of the passenger strand.The structural basis for binding of RNA to the argonaute protein was examined by X-ray crystallography of the binding domain of an RNA-bound argonaute protein. Here, the phosphorylated 5' end of the RNA strand enters a conserved basic surface pocket and makes contacts through a divalent cation such as magnesium and by aromatic stacking between the 5' nucleotide in the siRNA and a conserved tyrosine residue. This site is thought to form a nucleation site for the binding of the siRNA to its mRNA target.It is not understood how the activated RISC complex locates complementary mRNAs within the cell. Although the cleavage process has been proposed to be linked to translation, translation of the mRNA target is not essential for RNAi-mediated degradation. Indeed, RNAi may be more effective against mRNA targets that are not translated. Argonaute proteins, the catalytic components of RISC, are localized to specific regions in the cytoplasm called P-bodies (also cytoplasmic bodies or GW bodies), which are regions with high rates of mRNA decay;miRNA activity is also clustered in P-bodies.Disruption of P bodies in cells decreases the efficiency of RNA interference, suggesting that they are the site of a critical step in the RNAi process Variation among organisms Organisms vary in their ability to take up foreign dsRNA and use it in the RNAi pathway. The effects of RNA interference can be both systemic and heritable in plants and C. elegans, although not in Drosophila or mammals. In plants, RNAi is thought to propagate by the transfer of siRNAs between cells through plasmodesmata.A broad general distinction between plants and animals lies in the targeting of endogenously produced miRNAs; in plants, miRNAs are usually perfectly or nearly perfectly complementary to their target genes and induce direct mRNA cleavage by RISC, while animals' miRNAs tend to be more divergent in sequence and induce translational repression. This translational effect may be produced by inhibiting the interactions of translation initiation factors with the messenger RNA's polyadenine tail.Some eukaryotic protozoa such as Leishmania and Trypanosoma cruzi lack the RNAi pathway entirely. Most or all of the components are also missing in some fungi, most notably the model organism Saccharomyces cerevisiae. Certain ascomycetes and basidiomycetes are also missing RNA interference pathways; this observation indicates that proteins required for RNA silencing have been lost independently from many fungal lineages, possibly due to the evolution of a novel pathway with similar function, or to the lack of selective advantage in certain niches.