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In previous work, we developed a neurocomputational model of list memory, based on
neural mechanisms, such as recurrent self-excitation and global inhibition that
implement a short-term memory activation-buffer. Here, we compare this activation-
buffer with a series of mathematical buffer models that originate from the 1960s, with
special emphasis on presentation rate effects. We then propose an extension of the
activation-buffer to address the process of selectively updating the buffer contents, which
is critical for modeling working memory and complex higher-level cognition.

1. Introduction

Many models of human memory have been developed in psychology since the
early 1960s1,2 addressing a variety of tasks such as the immediate free recall.
Most of these models were abstract-mathematical (rather than neuro-
computational models) and their advantage is being simple and transparent, thus
easy to understand. Recently, a shift towards neurocomputational models is
taking place3-9, which due to their increased complexity can account for a wider
range of data including the effects of neuropsychological dissociations6,10.
Nevertheless such models are more complicated and therefore more difficult to
understand.
       Here we start (section 2) by comparing our previous neurocomputational
model of active memory with a series of buffer models, suggesting a way to
reduce it (or extend the buffer models) so as to capture some important data in
immediate free recall. In section 3, we propose ways in which our activation-
buffer could be extended in order to address working memory processes, such as
selective updating.

2. Mathematical and Neurocomputational Buffer Models

In the field of memory research, the free recall paradigm has led to many
theoretical viewpoints and debates. In the immediate free recall paradigm,
participants are required to report, in any order, as many items from a list that
has been presented to them. The typical result is better recall performance for
items that were presented at the beginning and at the end of the list, the primacy



2

and (S-shaped) recency effect11, respectively. One view of the recency effect is
that the end-of-list items still reside in a limited-capacity short-term buffer from
which they are reported without error1,2,4-6,12. In this section, we compare
mathematical buffer models, which have been used in early psychological
theories to explain free recall performance, with our neurocomputational
activation-buffer, with a special emphasis on the effect of presentation rate.

The models are compared on four measures. First, the serial position
functions present the probability that an item is in the buffer at the end of a
sequence of twelve items (1st column in Figures 1 and 4). Second, we compare
the distributions of the number of items in the buffer at the end of the sequence
(2nd column in Figures 1 and 4). Third, we compare the probability that a new
item will enter the buffer as function of the presentation rate and the number of
items already in the buffer (3rd column in Figures 1 and 4). This comparison will
turn out to provide valuable information related to the effect of presentation rate.
The fourth and last measure on which the buffer models are compared is the
distribution of probabilities that an item will be displaced from the buffer as a
function of the number of items already in the buffer and the relative recency of
the displaced item (4th column in Figures 1 and 4).

2.1. Mathematical Buffer Models

Three mathematical buffer models that have been used in the psychological
literature are the random-buffer1,2, the knock-out buffer1,13 and the variable
knock-out buffer14. Due to space-limitations a thorough analysis including other
buffer models will be left for a future project.

Random-buffer model (RB)

The first buffer model is that in which the buffer consists of a fixed number of
slots, r. When the buffer is full to capacity, a displacement process randomly
(and with equal probability) selects which of the r slots will be emptied and be
occupied with the newly presented item. The top row of Figure 1 shows the
results of such a model. The left panel shows the serial position function for a
buffer with capacity 3 and with capacity 4. These are exponential functions with
base (r-1)/r and exponent -(sp+1), where sp indicates the recency of the item (-1
being the most recent). The second panel shows the distribution of the effective
capacity at the end of a sequence of twelve items. As this is a fixed-capacity
buffer, the distribution is centred on r. The third panel shows the probability that
a presented item will enter the buffer as a function of presentation duration and
number of items already in the buffer. By definition, all the mathematical buffer
models described here have a probability of unity that an item enters the buffer,
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regardless of presentation duration and current buffer contents. The right-most
panel shows the distribution of the probabilities that a buffer-item will be
displaced from the buffer, as a function of its relative recency (the item that has
been in the buffer the longest will have a relative recency of –r, whereas the
latest addition to the buffer contents has a relative recency of –1). No surprise
here that with random displacement, the distribution is uniform with probability
1/r.

Figure 1. Comparisons of three mathematical buffer models. From top to bottom, results are
presented for the random-buffer (RB), the knock-out buffer (KO) and the variable knock-out buffer
(VKO). The results show serial position functions at different levels of capacity and displacement
parameters (1st column), distribution of the number of items in the buffer after a twelve items
sequence (2nd column), probability of a new item entering the buffer as a function of presentation
duration (see abscissa) and number of items already in the buffer (3rd column) and the distribution
of displacement probabilities as a function of the number of items in the buffer and the relative
recency (4th column).

Knock-out buffer model (KO)

A variant of the random-buffer model is one in which the displacement process
is such that the probability that an item is displaced from the buffer increases
with the duration that the item has been in the buffer. This has been referred to as
the knock-out buffer model1,13. The probability, di, of displacing item i, depends
on the capacity r and a parameter δ that governs the slope of the displacement
distribution (see Equation 1). The second row of Figure 1 shows the results. In
the first panel, serial positions are presented for the model with capacity 3 and 4
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and with δ=0.5 and δ=0.8. What is immediately apparent is that all serial
position functions are S-shaped and that this increases with δ (compare 3-0.5
with 3-0.8). The distributions of the capacity (second panel) and the probability
of entering the buffer (third panel) are the same as the random-buffer model. The
right-most panel presents the distribution of displacement probabilities, which is
a clear departure from the random process.

di = δ(1-δ)i-1/[1- (1-δ)r]                                                                         (Eq. 1)

Variable knock-out buffer model (VKO)

The third buffer model is one that extends the knock-out buffer and in which for
every trial in a simulation the capacity r is drawn from a distribution of
capacities14. This has the benefit of allowing more flexibility, as a participant’s
effective capacity may also depend on internal fluctuations in attention. The third
row in Figure 1 shows the results of the variable-knock-out buffer model. The
serial position function is basically a weighted aggregate of the various knock-
out buffers within it. The second panel shows the distribution of capacities from
which r was drawn. As an item always enters the buffer (third panel), the
distribution of the displacement probabilities (fourth panel) is a collection of
distributions at various capacities (which are all at unity).

2.2. Neurocomputational Activation-Buffer Model

We4-6 developed a neurocomputational model of immediate free recall that is
formulated within the Hebbian framework15,16 with short-term memory (or
primary memory16) being mediated by the current set of activated neuronal
representations and long-term memory (or secondary memory16) being mediated
by the connections between the activated subset and an episodic contextual
system.

Figure 2 presents the architecture of our neurocomputational model. Each
unit represents an assembly of interconnected neurons. When a stimulus is
presented to the system, the corresponding representation will receive sensory
input and increases in activation. To simplify, we use a single parameter, α, for
the self-excitation. The self-excitation enables the unit to remain active above
threshold after the sensory input has been taken away. Within the system, there is
a global competition. This can be considered as originating from a general pool
of inhibitory inter-neurons and has the effect of limiting the number of
representations that can be active simultaneously.
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Figure 2. Architecture of our neurocomputational approach to list memory. The ellipse represents
the activation-buffer, with units representing cell-assemblies and is addressed in section 2. The
arrow ending in closed circles denotes global inhibition. The units form episodic links with a
context representation. Sensory input goes directly into the activation-buffer after being neuro-
modulated. The specific architecture of how the neuromodulation is driven is arbitrarily chosen and
does not change the discussion on selective updating in section 3.

Our model is used in real-time, where all units are updated at every time-
step according to a leaky integrator differential equation of which Equation 2 is
the numerical solution in discrete time steps.

xi(t+1) = λxi(t) + [1-λ][αF(xi(t)) - β∑F(xj(t)) +  Ii(t) + ξ]                (Eq. 2)

Here, λ=0.98 is the decay constant, α=2.0 the self-excitation, β=0.15 the global
inhibition, I(t)=0.33 (0, when no input is presented) the sensory input at time t
and ξ the zero-mean Gaussian noise with standard deviation σ=0.5. F(x) is the
output activation function8 MAX[0, x/(1+x)], which is similar to the threshold-
linear function with the addition of a saturation non-linearity.

We also assume that units that are activated above threshold are encoded in
episodic memory, which comprises of a matrix of Hebbian connection weights
between the items and a context system. However, here we focus primarily on
the dynamics of the activation-buffer, which are illustrated in Figure 3. Twelve
units are sequentially presented with sensory input for 250 (left panel) or 100
(right panel) iterations corresponding to a typical experimental procedure where
a list of twelve items are presented sequentially on a computer screen at different
presentation rates. Each line corresponds to the output activation, F(xi), of a
given unit i. The left panel of Figure 3 shows the set of activation trajectories
when the presentation rate is relatively slow and the right panel shows the set of
trajectories at fast presentation rate. Two aspects can be observed. First, units
remain active after stimulus offset, which is due to the self-recurrent excitation.

Sensory Input

Long-term
knowledge

Task-dependent
neuromodulation

CONTEXT
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Second, several units can be active simultaneously and there is an upper limit to
the number of units that are active above threshold, which reflects the capacity

limitation due to global inhibition.
Figure 3. Activation trajectories of twelve sequentially activated units at slow (left) and fast (right)
presentation rates. Time-steps are set along the abscissa and the output activation on the ordinate.
The horizontal line [at F(X)=0.2] represents the activation threshold above which an item is said to
be in the buffer.

With increase in the presentation rate, the activation-buffer changes its
behaviour. First, the units reach a lower level of activation compared to the
condition with slow presentation rate. This merely reflects the limited time that is
given for the units to accrue. Second, with the same structural parameters, the
number of active units is smaller than the number of active units at slow
presentation rates, implying that the effective capacity of the activation-buffer
depends on external variables like presentation rate. Elsewhere4, we have shown
that the system will not exceed a certain upper limit given a wide range of
presentation ratesa. Third, whereas at slow presentation rates the unit to be
displaced (de-activated) from the current buffer contents, is typically one that has
been in the buffer (above threshold) the longest, at fast presentation rates the
buffer only maintains the first few items and blocks out any subsequently
presented item. In other words, at low presentation rates, the activation-buffer is
a limited-capacity buffer system with a knock-out displacement process, while at
fast presentation rates the probability of entering the buffer is greatly diminished.
This prediction is fully due to the limited time available that a unit can be
activated to the extent that it can overcome the amount of inhibition already in
the system. As the first item enters an empty buffer, it will not have to overcome
this sort of inhibition, giving it an advantage over subsequent activated units.

2.3. The Effect of Presentation Rate on Buffer Dynamics

Figure 3 shows activation trajectories for the activation-buffer under slow and
fast presentation rates. In the top row of Figure 4 the results of the activation-
buffer are presented on the same four measures we examined for the three

                                                          
a In fact, the effective capacity shows an inverted U-curve with presentation rate.
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mathematical buffer models, so that it can be compared with them (cf. Figure 1).
First of all, the left panel shows the serial position functions for three
presentation rates (here presented as durations). With slow presentation rates
(250 iterations per item), the serial position function is recency-biased and S-
shaped, whereas with intermediate rates (150 iterations per item), the function is
recency-biased, J-shaped (exponentially-shaped) and some primacy items are
maintained. However, with fast presentation rates (50 iterations per item), the
serial position function is primacy-biased and J-shaped. It is important to
remember that the serial position functions represent the probability of items
presented at that position in the sequence still being active above threshold. No
Hebbian weight-changes or other long-term memory processes are incorporated.
This switch from recency to primacy with increase in presentation rate was
verified in an experiment6. The activation-buffer maintains less items under fast
than under slow presentation rates, as indicated by the shift in the distribution of
the number of active items at the end of a twelve-item sequence. As mentioned
before, in this range of presentation rates, the effective capacity is negatively
correlated with the presentation rate.

Two major differences between the activation-buffer and the mathematical
buffers were observed. First, for the activation-buffer, the probability that an
item will enter the buffer depends on the presentation rate and the number of
items already in the buffer. In the activation-buffer, increasing the presentation
rate decreases the probability that a unit can be activated to such a level at which
it can overcome the inhibition in the system, which increases with the number of
items already in the buffer. This dual-relationship leads to the complex
interaction depicted in the third panel. Second, with slow presentation rates the
distribution of displacement probabilities for the activation-buffer suggest a
knock-out displacement process (see fourth panel). With fast presentation rates
the distribution becomes more flat (not shown). This suggests a displacement
rule that is rate-dependent, such that with faster presentation rates δ decreases.
We focus on extending the knock-out buffer with the rate-dependent
probabilities that a presented item will enter the buffer and decrease δ for fast
presentation rates.

2.4. Extending the Knock-Out Buffer

The above comparisons seem to suggest that the main reason why the
mathematical buffers do not predict the shift from a recency-biased to a primacy-
biased serial position function with increase in presentation rate is that in those
models an item always enters the buffer. Although in the original Atkinson and
Shiffrin1 buffer model, a parameter was included that governed the probability of
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entering the buffer, simulations estimated its value at around unity, which is
consistent with the activation-buffer at slow presentation rates. Re-introducing
the parameter and making it dependent on the number of items already in the
buffer and presentation rate would allow the mathematical model to
accommodate the recency-to-primacy shift.

Figure 4. Results for the activation-buffer (AB; top row) and the activation knock-out buffer (AKO;
bottom row) on the four measures for slow (250 iterations per item) and fast (50 iterations per item)
presentation rates. For the activation-buffer, an intermediate presentation is also shown, indicating a
gradual transition from recency-to-primacy bias. Note that for the activation knock-out buffer, the
probability of entering the buffer at the two presentation rates are taken directly from those of the
activation-buffer. The distribution of displacement probabilities as a function of relative recency is
only shown for the slow presentation rate. In the AKO buffer, δslow=0.5 and δfast=0.01.

To test this assumption, we added a parameter to the knock-out buffer. We
chose to extend the knock-out buffer as it contains the right kind of assumptions
that lead to S-shaped serial position functions. Although we used the
probabilities obtained with the activation-buffer, we did notice that the
relationship between the probability of entering the buffer, the presentation rate
and the current capacity can be approximated with a single sigmoidal function.
Here, we are only interested in whether adding the probabilities will produce the
two main predictions from the activation-buffer. As can be seen in the bottom
row of Figure 4, adding the probabilities allows the model to predict the recency-
to-primacy shift (first panel) and the decrease in effective capacity with increase
in presentation rate (second panel). The rightmost panel shows the distributions
of displacement probabilities, which are similar to those of the variable knock-
out (third row, Figure 1) and activation-buffer (top row, Figure 4). It is important
to realise that the variability in the effective capacity is a consequence of the
probabilities that a newly presented item enters the system and the probabilities
that an item is displaced from the system.
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This exercise suggests that the initial conception of the knock-out buffer
with the additional “entry-parameter” by Atkinson and Shiffrin1 contained the
relevant assumptions to predict the recency-to-primacy shift. These assumptions
in turn follow naturally from the complex dynamics of the activation-buffer. To
summarise, the activation-buffer shows that δ and the entry-probability are
inversely related to the presentation rate.

3. Selective Updating of the Buffer

The neurocomputational activation-buffer captures the complex dynamics of
short-term memory that are needed to explain the data found in immediate free
recall. Within this neurocomputational level of description, it is possible to
model the dynamical process of updating the contents of the buffer in accordance
with a given task set, as needed to account for cognitive control and working
memory3,7. The updating task we examine here is one in which a sequence of
concrete and abstract nouns is presented with the instructions to remember only
those words that represent small things17. For example, in the sequence car, desk,
idea, key, plane, staple, giraffe only the words key and staple need to be
reported. In this example, it is not until key is presented that one knows that car
and desk belong to the category of large things and the contents of the buffer is
to be updated. However, when plane is presented it is already apparent that this
belongs to the large-things category and will not even enter the buffer.

As in previous work3,18, we assume that neuromodulation of sensory input
introduces sufficient flexibility to support task-dependent selective updating. In
Figure 2 the architecture illustrates a configuration that could lead to task-
dependent neuromodulatory control. Sensory input enters the activation-buffer
and activates long-term knowledge about the presented item, such as magnitude.
With the instruction that small things need to be maintained, words representing
small things will provide larger modulated input to the buffer than words
representing large things or abstract nouns. In order to capture the essence of the
neuromodulation, we represented a sequence of concrete nouns as a sequence of
items that vary in the amount of input (Itarget=0.33, Inon-target=0.21). A more
detailed model of selective updating with an actual implemented
neuromodulatory system is due to space limitations left for future work.

In the left-hand side of Figure 5 the activation trajectories are shown for a
sequence of twelve nouns in which nouns 4, 5 and 6 are target nouns and all
others are non-targets. As can be seen, the model maintains the first three non-
targets until the three targets are presented. After the three targets, none of the
non-targets displace the target items: the system has updated the current contents
and maintains the targets in the face of distractors. This is due to the targets
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receiving sufficient effective input to overcome the inhibition driven by the
initial non-targets, whereas the non-targets presented after the targets do not
receive enough effective input to overcome the inhibition that is then driven by
the targets.

In our work on free recall memory4-6, we assumed that in addition to
maintenance in the activation buffer, Hebbian connections are formed between
items that are active above threshold and an episodic context system. The
strength of these connections is proportional to the integral under the activation
trajectories and the threshold. At retrieval, participants can report items from the
buffer or trigger a slower competitive retrieval process that uses the episodic
Hebbian connections. In Figure 5, it can be seen that non-targets presented
before the targets will have stronger episodic connections than the many non-
targets presented after the targets, which could lead to more intrusions of non-
targets presented before the targets than of those presented after the targets, as
reported by Palladino and co-workers17 (right-hand side of Figure 5).

Figure 5. Left: Activation trajectories for a sequence of twelve items in which items 4, 5, and 6 are
target items. Note that the targets displace the preceding non-targets and that non of the subsequent
non-targets are maintained. The shaded areas correspond to the episodic strengths for the non-
targets presented before (grey) and after (black) the target items. Right: Results from Palladino and
coworkers on the number of non-target intrusions. Delayed intrusions are before-target non-targets
and immediate intrusions are after-target non-targets.

4. Conclusion

In this paper, we compared our neurocomputational activation-buffer with a
series of mathematical buffers used in the earlier literature. We found that these
buffer models were lacking the flexibility needed to enable them to predict
presentation rate effects and we proposed an extension of the knock-out buffer,
which may be seen as a reduction of our activation model. We suggest that this
illustrates how starting from neurocomputational principles (before reducing to
an abstract model) may be productive in modeling psychological processes,
since it can ground relatively arbitrary assumptions (in this case the buffer
properties). For example, the buffer properties and its capacity limitation follow
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from mechanisms of recurrent self-excitation (interconnectivity of neurons
within an assembly) and the global inhibition (originating from a pool of
interneurons). This balance is dynamic and leads to a distribution of the
capacities instead of a single capacity value and is affected by external factors
like presentation rate, leading to the recency-to-primacy shift.

 We have also presented a conceptual extension to the activation-buffer that
addresses processes, such as selective updating of the buffer contents. Recently,
we10 showed how the model can account for deviant serial position functions
found with neuropsychological patients. We believe that a neurocomputational
approach to (short-term) memory not only allows a way to understand how
neural principles underlie cognitive behaviour, but also provides a promising
platform on which natural extensions can allow for more complex higher-level
cognitive processes to be addressed.
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