
WEIGHTED PARTIALLY ORDERD SETS OF FINITE
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OLENA DROZD-KOROLEVA

Representations of posets (partially ordered sets) were introduced
in [9]. In [7, 8] a criterion was given for a poset to be representation
finite, i.e. having only finitely many indecomposable representations
(up to isomorphism), and all indecomposable representations of posets
of finite type were described. Further, in [4] Coxeter transformations
were constructed for representations of posets, following the framework
of [1]. It implied another criterion for a poset to be representation fi-
nite, not involving explicit calculations, but using the Tits quadratic
form, also analogous to that of [1]. Note that this paper did not give
all reflections, corresponding to the Tits form. They were constructed
in [6], using a generalization of representations of posets, namely, rep-
resentations of bisected posets.

Note that all these matrix problems are “split,” i.e. do not involve
extensions of the basic field. Some cases, when such extensions arise,
were considered by Dlab and Ringel [2, 3]. The problems considered
in [3] generalize representations of posets, though this generalization
seems insufficient, especially when compared with [2].

Our aim is to present a more adequate generalization of representa-
tions of posets, which involves field extensions (even non-commutative),
to construct the corresponding reflection functors and thus to obtain
a criterion of representation finiteness, as well as a description of in-
decomposable representations in representation finite case. We call
the arising problems representations of weighed bisected posets. They
seem to be the most natural generalization of representations of posets
allowing these constructions. By the way, even in “split” case they
include the so called Schurian vector space categories (though nothing
new arises in representation finite split case).

Since most proofs are quite similar to those of [6], we mainly only
sketch them, though we give the details of all constructions, since they
are not so evident.

1. Definitions and the Main Theorem

Recall [6] that a bisected poset is a poset S with a fixed partition
S = S− ∪ S+ (S− ∩ S+ = ∅) such that if i ∈ S− and j < i, also

j ∈ S−. We introduce a new symbol 0 /∈ S and set Ŝ = S∪{ 0 } , Ŝ+ =

S+ ∪ { 0 } , Ŝ− = S− ∪ { 0 }. It is convenient, and we always do so, to
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set 0 < i for i ∈ S− and i < 0 for i ∈ S+. Note that < is an order on
Ŝ− and on Ŝ+, but not an order on Ŝ. We write

• il j if i < j and either both i, j ∈ Ŝ− or both i, j ∈ Ŝ+;
• i� j if i < j, i ∈ S−, j ∈ S+;
• i ≶ j if i < j or j < i for i, j ∈ S.

Let k be a fixed field (basic field). We consider finite dimensional
skewfields (division algebras) over k and finite dimensional bimod-
ules over such skewfields. If V is a K-L-bimodule and W is a L-F-
bimodule, we write VW for the K-F-bimodule V ⊗L W . We also set
V ∗ = Homk(V, k) and naturally identify it with HomK(V,K) and with
HomL(V,L) as L-K-bimodules. We also use the natural isomorphisms

HomK-F(UV,W ) ' HomK-L(U,WV ∗) ' HomL-F(V, U∗W ) '(1)

' HomF-L(W ∗U, V ∗) ' HomL-K(VW ∗, U∗),

where U, V,W are, respectively, K-L-bimodule, L-F-bimodule and K-F-
bimodule, as well as the duality isomorphism V ' V ∗∗. If a map f

belongs to one of these spaces, we usually denote by f̃ its image in
another one under the corresponding isomorphism.

Definition 1.1. A weighted bisected poset, or WBS, consists of:

• A finite poset S = S− ∪ S+. We

• a map i 7→ K(i), where i ∈ Ŝ and K(i) is a finite dimensional
skewfield over k;

• a set of finite dimensional K(i)-K(j)-bimodules V (ij), where

i, j ∈ Ŝ and either j l i or i� j;
• a set of K(i)-K(j)-linear maps µ(ikj) : V (ik)V (kj) → V (ij)

given for any triple i, j, k ∈ Ŝ such that all these bimodules are
defined. We write uv for µ(ikj)(u⊗ v).

These maps must satisfy the following conditions:

(1) “associativity”: µ(ilj)(µ(ikl)⊗ 1) = µ(ikj)(1⊗ µ(klj)) as soon
as these maps are defined (it means that (uv)w = u(vw));

(2) “non-degeneracy”:
• if j < i, i, j ∈ S− and v ∈ V (ij), v 6= 0, there is an element
u ∈ V (j0) such that vu 6= 0;

• if j < i, i, j ∈ S+ and v ∈ V (ij), v 6= 0, there is an element
u ∈ V (0i) such that uv 6= 0;

• if j � i, the map µ(j0i) is surjective.

We often write “a WBS S” not mentioning the ingredients S±, K(i),
V (ij) and µ(ikj).

Definition 1.2. (1) A representation (M, f) of a WBS S consists
of:
• finite dimensional K(i)-vector spaces M(i) given for each

i ∈ Ŝ;
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• K(i)-linear maps f(i) : M(i) → V (i0)M(0) given for each
i ∈ S−;

• K(0)-linear maps f(i) : M(0) → V (0i)M(i) given for each
i ∈ S+,

such that the product

M(i)
f(i)−−→ V (i0)M(0)

1⊗f(j)−−−−→ V (i0)V (0j)M(j)
µ(i0j)⊗1−−−−−→ V (ij)M(j)

is zero for every pair i� j. Again, we often write “a represen-
tation M” not mentioning f .

(2) A morphism φ : (M, f) → (M, g) is a set of K(i)-linear maps

φ(i) : M(i) → N(i) for all i ∈ Ŝ,
φ(ji) : M(i) → V (ij)N(j) for j l i,

that satisfy the following conditions:

g(i)φ(0) = (1⊗ φ(i))f(i) +
∑
i<j

(µ(0ji)⊗ 1)(1⊗ φ(ij))f(j)

for i ∈ S+ and

g(i)φ(i) = (1⊗ φ(0))f(i) +
∑
j<i

(µ(ij0)⊗ 1)(1⊗ g(j))φ(ji)

for i ∈ S−.
We denote by HomS(M,N) the set of such morphisms.

Remark. If all skewfields K(i) as well as all bimodules V (ij) coincide
with the basic field k and all maps µ(ikj) are identities, these definitions
coincide with the definitions of representations of bisected posets from
[6]. If all K(i) = k but not necessarily V (ij) = k, we get a slight gen-
eralization of subspace categories of Schurian vector space categories
[11]. Note that in the latter case the problem is never representation
finite.

Representations of a WBS S and their morphisms form a k-linear,
fully additive category repS. The unit morphism idM in this category
is such that idM(i) = idM(i) for each i and all idM(ij) = 0. Since
all spaces HomS(M,N) are finite dimensional, it is a Krull–Schmidt
category, i.e. every representation uniquely decomposes into a direct
sum of indecomposable ones.

Definition 1.3. We call a WBS S representation finite if it only has
finitely many non-isomorphic indecomposable representations. Other-
wise we call it representation infinite.

We are going to find a criterion for a WBS to be representation finite
and to describe indecomposable representations in representation finite
case. To do it, just as in [1, 2, 4, 6], we use the Tits form and reflection
functors.
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Definition 1.4. For a WBS S we set di = dimk K(i), dij = dji =

dimk V (ij), consider the real vector space RbS of functions x : Ŝ → R
and define the Tits form QS as the quadratic form on the space RbS

such that

QS(x) =
∑
i∈bS

dix(i)2 +
∑
i<j

i,j∈S

dijx(i)x(j)−
∑
i∈S

di0x(i)x(0).

We fix the natural base
{

ei | i ∈ Ŝ
}

in the space RbS, where ei(j) =

δij and identify a function x : Ŝ → R with the vector (xi | i ∈ Ŝ),
where xi = x(i). For a representation M ∈ repS we define its (vector)

dimension dimM ∈ RbS as the function i 7→ dimkM(i). Actually,

dimM ∈ NbS; the latter semigroup we call the semigroup of dimensions
for S.

The Tits form is integer in the sense of [12], since di | dij for all
possible i, j. Therefore, (real) roots of this form are defined: they are
vectors that can be obtained from ei by a series of reflections. Recall
that the reflection σi is defined as the unique non-identical linear map

RbS → RbS such that σix(j) = x(j) for all j 6= i and QS(σix) = QS(x)
for all x. One easily sees that

d0σ0x(0) =
∑
i∈S

di0x(i)− d0x(0),

diσix(i) = di0x(0)− dix(i)−
∑
j≶i

dijx(j) if i ∈ S.

We write x > 0 and call x positive if x 6= 0 and x(i) > 0 for all i ∈ Ŝ.
Especially, positive roots are defined. Now we are able to formulate the
main theorem of our paper.

Theorem 1.5. A WBS S is representation finite if and only if its Tits
form is weakly positive, i.e. QS(x) > 0 for each x > 0. Moreover, in
this case

• the dimensions of indecomposable representations of S coincide
with the positive roots of the form QS;

• any two indecomposable representations having equal dimen-
sions are isomorphic.

The fact that representation finiteness implies weakly positivity of
the Tits form is general for matrix problems. It follows, for instance,
from [5]. The proof of other assertions of Theorem 1.5 relies upon re-
flection functors, which we shall construct in the next section. Though
this construction was inspired by [6], its details are more complicated,
so we present them thoroughly.
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2. Reflection functors

First we define reflections of WBS themselves.

Definition 2.1. (1) Given a WBS S, we set:
• V (ii) = K(i) and take for µ(iij) and µ(ijj) the natural

isomorphisms K(i)V (ij) ' V (ij) and V (ij)K(j) ' V (ij)
as soon as V (ij) is defined;

• V (ji) = V (ij)∗ as soon as V (ij) is defined;
• µ(kji) and µ(jik) to be the maps corresponding to µ(ikj)

via the isomorphisms (1) as soon as µ(ikj) is defined.
One easily checks that the associativity conditions hold for these
maps too, while the non-degeneracy conditions turn into sur-
jectivity of the maps µ(j0i) for all i, j ∈ S, j < i.

(2) We call an element p ∈ Ŝ a source (a sink) if it is a maximal

element of Ŝ− (respectively, a minimal element of Ŝ+). Espe-
cially, 0 is a source (a sink) if and only if S− = ∅ (respectively,
S+ = ∅).

(3) For any source or a sink p we define the reflected WBS Sp

with the same underlying poset and the same values of K(i) as
follows:
(a) If p ∈ S− (p ∈ S+) is a source (respectively, a sink), then

S−p = S− \ { p }, S+
p = S+ ∪ { p } (respectively, S+

p = S+ \
{ p }, S−p = S− ∪ { p });

(b) If 0 is a source (a sink), then S− = S, S+ = ∅ (respectively,
S+ = S, S− = ∅).

The new values of V (ij) and µ(ikj) are defined as in item (1).

Note that if p is a source (a sink) in Ŝ, it becomes a sink (respectively,

a source) in Ŝp.

We also consider the dual WBS.

Definition 2.2. Let S be a WBS, M = (M, f) be a representation
of S. The dual WBS S◦ and the dual representation M◦(M◦, f◦) are
defined as follows:

(1) As an ordered set, S◦ is opposite to S, i.e. consists of the
same elements, but i < j in S◦ if and only if j < i in S.
The bisection is given by the rule S◦± = S∓. The skewfields
K◦(i) are opposite to K(i), V ◦(ij) = V (ji) as an K◦(i)-K◦(j)-
bimodule, and µ◦(ikj) = µ(jki) under the natural identification
of V ◦(ik)V ◦(kj) with V (jk)V (ki).

(2) M◦(i) = M(i)∗ and f ◦(i) = f̃(i)∗, namely,
(a) if i ∈ S◦+ = S−, then f(i) : M(i) → V (i0)M(0), thus

f(i)∗ : M(0)∗V (i0)∗ → M(i)∗ and tif(i)∗ : M(0)∗ =
M◦(0) →M(i)∗V (i0) = V ◦(0i)M◦(i);
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(b) if i ∈ S◦− = S+, then f(i) : M(0) → V (0i)M(i), thus

f(i)∗ : M(i)∗V (0i)∗ →M(0)∗ and f̃(i)∗ : M(i)∗ = M◦(i) →
M(0)∗V (0i) = V ◦(i0)M◦(0).

(3) If φ ∈ HomS(M,N), we define φ◦ : N◦ → M◦ setting φ◦(i) =

φ̃(i)∗ and φ◦(ij) = φ̃(ji)∗.

The following result is then evident.

Proposition 2.3. Definition 2.2 establishes a duality functor ◦ : repS →
repS◦, i.e. an equivalence repS → (repS◦)op such that there is a
natural isomorphism M ' (M◦)◦. Thus there is a one-to-one cor-
respondence between indecomposable representations of S and S◦. In
particular, S is representation finite if and only if so is S◦.

We introduce some useful notations.

Definition 2.4. Let M = (M, f) be a representation of a WBS S,
p ∈ S. We set:

M+(p) =
⊕

p6i, i∈S+

V (pi)M(i),

M−(p) =
⊕

i6p, i∈S−

V (pi)M(i),

f+(p) : V (p0)M(0) →M+(p) is the map with the components

f+(pi) : V (p0)M(0)
1⊗f(i)−−−→ V (p0)V (0i)M(i)

µ(p0i)⊗1−−−−−→ V (pi)M(i),

f−(p) : M−(p) → V (p0)M(0) is the map with the components

f−(pi) : V (pi)M(i)
1⊗f(i)−−−→ V (pi)V (i0)M(0)

µ(pi0)⊗1−−−−−→ V (p0)M(0).

We define M±(0) and f±(0) by analogous formulae, just omitting con-
ditions “p 6 i” and “i 6 p” under the summation sign.

Now we construct the reflection functors Σp : repS → repSp.

Definition 2.5. Let M = (M, f) be a representations of a WBS S,

p ∈ Ŝ is a source or a sink. We define a representation ΣpM = (M ′, f ′)
of the WBS Sp as follows (in all cases M ′(i) = M(i) for all i 6= p):

(1) If p ∈ S− is a source, we set f ′(i) = f(i) for i 6= p, M ′(p) =
Ker f+(p)/ Im f−(p), choose a retraction ρM : V (p0)M(0) →
Ker f+(p) and set f ′(p) = π̃MρM , where πM is the natural sur-
jection Ker f+(p) →M ′(p).

(2) If p = 0 is a source, we set M ′(0) = Cok f+ and f ′(i) = π̃M(i),
where πM(i) is the i-th component of the natural surjection
πM : M+(p) →M ′(0).

(3) If p ∈ S+ is a sink, we set f ′(i) = f(i) if i 6= p, M ′(p) =
Ker f+(p)/ Im f−(p), choose a section σM : Cok f−p → V (p0)M(0)
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and set f ′(p) = σMεM , where εM is the natural injectionM ′(p) →
Cok f−(p).

(4) If 0 is a sink, we setM ′(0) = Ker f−(0) and f ′(i) = ε̃M(i), where
εM(i) is the i-th component of the embedding εM : M ′(0) →
M−(0).

Evidently, M ′ is indeed a representation of Sp. In cases 1 and 3 these
definitions depend on the choice of ρM and σM . Nevertheless, Corollary
2.7 below will show that another choice of ηM and σM gives isomorphic
representations of Sp.

We also define reflected morphisms morphisms.

Definition 2.6. Keep the notations of Definition 2.5, and let φ : M →
N be a morphism of representations, where N = (N, g). We define a
morphism Σpφ = φ′ : ΣpM → Σp(N) as follows (again we set φ′(i) =
φ(i) and φ′(ij) = φ(ij) if i 6= p, j 6= p):

(1) Let p ∈ S− be a source. Then f+(p) induces an injection
Im(1− θρM) →M+(p), where θ is the embedding Ker f+(p) →
V (p0)M(0), so we can choose a homomorphism ξ : M+(p) →
V (p0)M(0) such that ξf+(p) = θρM − 1. We set
• φ′(p)(x+Im f−(p)) = (1⊗φ(0))(x)+Im g−(p) for every x ∈

Ker f+(p). Note that the definition of morphisms implies
that 1 ⊗ φ(0) maps Ker f+(p) to Ker g+(p) and Im f−(p)
to Im g−(p).

• φ′(pi) = ψ̃(i), where i > p, ψ(i) = πNρN(1⊗ φ(0))ξ(i) and
ξ(i) is the i-th component of ξ.

(2) Let p = 0 be a source. Then we choose a section η : M ′(0) →
M+(0) and set
• φ′(0) = πNφ

+η, where φ+ : M+(0) → N+(0) has the (ij)-
th component 1 ⊗ φ(i) if i = j, (µ(pji) ⊗ 1)(1 ⊗ φ(ij)) if
i < j, and 0 if j < i.

(3) Let p ∈ S+ be a sink. Then g−(p) induces an surjectionN−(p) →
Im(1 − σNτ), where τ is the natural surjection V (p0)N(0) →
Cok g−(p), so we can choose a homomorphism η : V (p0)N(0) →
N−(p) such that g−(p)η = σNτ − 1. We set
• φ′(p)(x + Im f−(p)) = (1 ⊗ φ(0))(x) + Im g−(p) for every
x ∈ Ker f+(p).

• φ′(ip) = η(i)(1 ⊗ φ(0))f ′(p), where i < p and η(i) is the
i-th component of η. (Recall that f ′(p) = σMεM .)

(4) Let p = 0 be a sink. Then we choose a retraction ξ : N−(0) →
N ′(0) and set
• φ′(0) = ξφ−εM , where φ− : M−(0) → N−(0) has the (ij)-

th component 1 ⊗ φ(i) if i = j, (µ(pji) ⊗ 1)(1 ⊗ φ(ij)) if
i < j, and 0 if j < i.
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Again, this construction depends on the choice of ξ or η. Never-
theless, we shall show that, after some non-essential factorization, this
dependence disappears.

Definition 2.7. We denote by T p the trivial representation at the
point p, i.e. such that T p(p) = k, T p(i) = 0 for i 6= p, by Ip the ideal
of repS generated by the identity morphism of T p and by rep(p) S the
factor-category repS/Ip. We call a representation M T p-free if it has
no direct summands isomorphic to T p.

The construction of ΣpM implies that this representation is always
T p-free. The following result is also evident.

Proposition 2.8. (1) If p ∈ S−, M is T p-free if and only if

f(p)−1
( ∑

i<p

Im f−(p)(i)
)

= 0.

(2) If p ∈ S+, M is T p-free if and only if

f̃(p)
( ⋂

i>p

Ker f+(p)(i)
)

= M(p).

(3) M is T ω-free if and only if Ker f+(ω) ⊆ Im f−(ω).

Proposition 2.9. We keep the notations of Definitions 2.5 and 2.6.

(1) Σpφ is indeed a morphism ΣpM → ΣpN .
(2) If we choose another homomorphism ξ′ or η′ instead of ξ or η,

satisfying the same conditions. Denote the obtained morphism
ΣpM → ΣpN by φ′′. Then φ′ − φ′′ ∈ Ip.

Proof. We check the case (3); the case (1) is quite similar and the cases
(2) and (4) are even easier. To prove that φ′ is a morphism, we only
have to verify that

g′(p)φ′(p) = (1⊗ φ′(0))f ′(p) +
∑
i<p

(µ(pi0)⊗ 1)(1⊗ g(i))φ′(ip).

First note that φ′(p) coincides with ρ′τ(1 ⊗ φ(0))σMεM , where ρ′ :
Cok g−(p) → N ′(p) is any retraction. Thus

g′(p)φ′(p) = σNεNρ
′τ(1⊗ φ(0))σMεM = σNτ(1⊗ φ(0))f ′(p).

On the other hand, (µ(pi0)⊗1)(1⊗g(i)) is the i-th component g−(p)(i)
of g−(p). Therefore

(µ(pi0)⊗ 1)(1⊗ g(i))φ′(ip) = g−(p)(i)η(i)(1⊗ φ(0))f ′(p) =

= (σN(i)τ(i)− 1)(1⊗ φ(0))f ′(p).

Thus also

(1⊗φ′(0))f ′(p)+
∑
i<p

(µ(pi0)⊗ 1)(1⊗ g(i))φ′(ip) = σNτ(1⊗φ(0))f ′(p).
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If we choose another η′ such that g−(p)η′ = σNτ −1 then δ = φ′−φ′′
has all components zero except maybe δ(ip) = γ(i)(1 ⊗ φ(0))f ′(p),
where γ = η−η′ and g−(p)γ = 0. Hence, δ = δ′δ′′, where δ′′ : M ′ → rT p

(r = dimK(p)M
′(p)) has all components zero except δ′′(p) = 1, while

δ′ : rT p → N ′ has all components zero except δ′(ip) = δ(ip). All
relations that we have to verify to show that δ′ and δ′′ are indeed
morphisms are trivial, except the only one for δ′ at the point p. But
the latter coincide with the corresponding relation for δ. �

Corollary 2.10. The constructions of subsections 2.4 and 2.5 actually
defines a functor Fp : rep(p) S → rep(p) Sp. In particular, the isomor-
phism class of FpM does not depend on the choice of ρM in case 1 or
σM in case 3.

Proposition 2.11. If p is a source or a sink, Fpp ' Id, the identity
functor of the category rep(p) S. Therefore Fp : rep(p) S → rep(p) Sp is
an equivalence.

Proof. Again we only consider the case 1, when p ∈ S− is a source. Let
M = (M, f) be a T p-free representation of rep(S), M ′ = (M ′, f ′) =
FpM and M ′′ = (M ′′, f ′′) = FpM

′. All components of M ′ and M ′′

coincide with those of M except M ′(p) = Ker f+(p)/ Im f−(p), f ′(p) =
π̃MρM and M ′′(p) = Ker f ′+(p)/ Im f ′−(p), f ′′(p) = σM ′εM ′ . By def-
inition, M ′+(p) = M+(p) ⊕ M ′(p) and f ′+(p)(p) = πMρM , hence
Ker f ′+(p) = Ker f+(p) ∩ Ker πMρM = Im f−(p). Thus M ′′(p) =
Im f−(p)/

∑
i<p Im f−(p)(i). By 2.3 (1), f(p) is injective and Im f−(p) =

Im f(p) ⊕
∑

i<p Im f−(p)(i). Therefore the natural map ι : M(p) →
M ′′(p) is bijective. Moreover, we can choose a section σM ′ so that
εM ′σM ′ coincides with this bijection. Then we obtain an isomorphism
φ : M → M ′′ setting φ(p) = ι, φ(i) = 1 for i 6= p and φ(ij) = 0 for
all possible i, j. Obviously, this construction is functorial modulo the
ideal Ip, so we get an isomorphism of functors Id ' Fpp. �

Definition 2.12. (1) Let p = (p1, p2, . . . , pm) be a sequence of ele-

ments of Ŝ. We call it admissible and define Sp by the following
recursive rules:
• If m = 1, p is admissible if and only if p1 is a source or a

sink; then Sp = Sp1 .
• If m > 1, p is admissible if and only if p1 is a source or a

sink in Sq, where q = (p2, p3, . . . , pm); then Sp = (Sq)p1 .
(2) If pm is a source (a sink) and, for every k < m, pk is a source

(respectively, a sink) in S(pk+1,pk+2,...,pm), we call the sequence p
a source sequence (respectively, a sink sequence).

(3) We set p∗ = (pm, pm−1, . . . , p1).
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(4) If p is admissible, we denote byΣp the compositionΣp1Σp2 . . . Σpm

and by Ip the ideal in repS generated by the identity mor-
phisms of the representations T (p1,p2,...,pk) = Σ(p1,p2,...,pk−1)T

pk

(1 6 k 6 m). We set rep(p) S = repS/Ip.

Corollary 2.13. If a sequence p is admissible, the functor Σp es-
tablishes an equivalence rep(p) S → rep(p∗) Sp, the inverse equivalence
being Σp∗. In particular, there is a one-to-one correspondence between
indecomposable representations of S and Sp; thus S is representation
finite if and only if so is Sp.

3. Proof of the Main Theorem

Now we are able to prove the sufficiency in Theorem 1.5. In this
section S denotes a WBS with a weakly positive Tits form. For any

dimension vector d ∈ NbS we consider the set rep(d,S) of representa-
tions of S of dimension d, namely such representations M ∈ repS that
M(i) is a fixed K(i)-vector space U(i) of dimension d(i). This set can
be considered as the set of k-valued points of an affine algebraic variety
over k. The dimension of this variety is at most

Q−
S (d) =

∑
i∈S

di0d(i)d(0)−
∑
i�j

dijd(i)d(j).

Isomorphisms between these representations can be considered as k-
valued elements of a linear algebraic group G(d) of dimension

Q+
S (d) =

∑
i∈bS

did(i)2 +
∑

ilj, i,j∈S

dijd(i)d(j).

The isomorphism classes are just the orbits of this group. Note that
QS = Q+

S −Q−
S . We denote by ind(d,S) the subset of indecomposable

representations from rep(d,S).
In what follows we suppose that the field k is infinite (the case of

finite fields can be then treated as in [1], and we omit the details, which
are quite standard). Then one easily sees that the k-valued points are
dense in the variety of representations, as well as in the group G(d).
Especially, if rep(d,S) has finitely many orbits, each component of this
variety is actually a closure of some orbit. Recall that a representation

M of a WBS S is called sincere if M(i) 6= 0 for each i ∈ Ŝ.
We prove the sufficiency using induction on |S|. Especially, we can

suppose that S only has finitely many non-sincere indecomposable rep-
resentations. More precisely, we prove the following result.

Theorem 3.1. Let S be a WBS with weakly positive Tits form. Then

(1) S is representation finite.
(2) ind(d,S) 6= ∅ if and only if d is a root of the Tits form. In

this case ind(d,S) consists of a unique orbit, which is dense in
rep(d,S).
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(3) If M is a sincere indecomposable representation of S, there is a
source (as well as a sink) sequence p such that M ' ΣpN for
a non-sincere representation N ∈ rep(Sp∗).

Our proof, like that of [6] relies on the following lemmas. (Recall
that we always suppose that the Tits form is weakly positive.)

Lemma 3.2. Suppose that the assertions of Theorem 3.1 hold for S.

Let p be a source or a sink in Ŝ, M = (M, f) ∈ ind(d,S), where d 6= ep,
d′ = σpd. Then:

(1) If d(p) > 0, the map f+(p) is surjective and the map f−(p) is
injective.

(2) If d(p) = 0, Ker f+(p) = Im f−(p).

Proof. It obviously follows from the assertion (2), since the repre-
sentations satisfying the claimed conditions form an open subset in
rep(d,S). �

Lemma 3.3. If S is a WBS with a weakly positive Tits form, p is a

source or a sink in Ŝ, M ∈ ind(d,S) and d(p) > 0, then f+(p) is
surjective and f−(p) is injective.

The proof of this lemma practically coincide with that of [6, Lemma
3.3], so we omit it.

Corollary 3.4. If S is a WBS with a weakly positive Tits form, M ∈
ind(d,S), p ∈ Ŝ is a source or a sink in Ŝ and d(p) > 0, then
dimΣpM = σp dimM . Moreover, if N is another representation with
the same properties, HomS(M,N) ' HomSp(ΣpM,ΣpN).

Since the number of positive roots is finite (it follows from [4, Ap-
pendix]), Corollary 3.4 implies the assertion (3) of Theorem 3.1. Since
the assertions (1) and (2) hold for non-sincere representations (by the
inductive conjecture), we obtain them for all representations too. It
accomplishes the proof of Theorem 3.4.
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