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1. Motivation

This paper is devoted to a class of matrix problems that is a generalization
of the class considered by Nazarova and Roiter [10], Crawley-Boewey [4] and
Bondarenko [2]. Even in its “original” form it was widely used in the represen-
tation theory and related topics. For example, Bondarenko used it to describe
modular representations of dihedral and quasi-dihedral groups [1, 3]. Another
example of application of this class of problems is the classification of Cohen-
Macaulay modules over curve singularities of type Ppq [7] and vector bundles
over projective line configurations of type Ãn [8].

Nevertheless the “original” class of problems had one fault: it did not involve
extensions of the basic field that are often necessary. I am going to consider
a wider class of matrix problems that I call representations of (generalized)
bunches of chains.

2. Definitions

Prior to formulating the problem formally we need some definitions. Let’s
start with making clear what is the object of our research, namely what is a
bunch of chains.

Definition 1. A b
¯
unch of chains over a field K consists of:

1. Two disjoint sets E and F (we put X := E t F);

2. An ordering < on X ;

3. Two symmetric relations ∼ and − on X (which are not equivalence rela-
tions);
We extend − to an equivalence relation θ on X , and for every class
c ∈ X/θ, set Ec = c ∩ E , Fc = c ∩ F .

4. For any class c ∈ X/θ, two field extensions Ec, Fc of dimension at most
2 over K.
We call an element e ∈ Ec (respectively f ∈ Fc) fat if Fc 6= K (resp.
Ec 6= K).

These data must satisfy the following conditions:

1. If x− y, then x ∈ E , y ∈ F or vice versa;

2. Ec, Fc are chains for every c ∈ X/θ;

3. If x is fat, then x ∼ x;

4. #{y|x ∼ y} ≤ 2 for every x ∈ X ;

5. If x, y, x′, y′ ∈ X are such that x′ < x, y′ < y and x − y, x′ − y′, x − y′,
then also x′ − y.
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Let us introduce some further notations.
Definition 2.

1. We call an element x ∈ X double if it is not fat and x ∼ x .

2. For every double element x ∈ X we introduce a new element x∗ and set
X ∗ = X t {x∗|x double} .

3. We prolong the ordering < and the relation − (not ∼ !) to X ∗ so that
every new element x∗ inherits all < and − relations that the element x
has.

4. We set E∗c = Ec t {x∗|x ∈ Ec double} , F∗
c = Fc t {x∗|x ∈ Fc double} .

Now we are ready to define what a representation of a bunch of chains is.
Definition 3. A representation A of X is given by the following data:

1. A non-negative integer nx prescribed for every x ∈ X ∗ in such a way
that x ∼ y implies nx = ny ;

2. For each pair (x, y) , where x ∈ E , y ∈ F and x−y , a matrix Axy of size
nx × ny with entries from Ex ⊗Fy . (If nx = 0 or ny = 0 , this matrix is
“empty” containing no rows, respectively columns.)
The vector dimA = {nx|x ∈ X ∗} is called the (vector) dimension of the
representation A .

Since we are interested in all representations of bunches of chains, we need to
know which representations will be considered as “the same,” namely equivalent.
If x ∈ E∗c ( x ∈ F∗

c ) set Hx = EndEc
(Ec⊗Fc) (respectively Hx = EndFc

(Ec⊗
Fc) ).

Definition 4. Two representations A and B of the same dimension are
said to be equivalent if they can be obtained from one another by a sequence
of the following elementary transformations:

1. Elementary transformations over Ec (or Fc ) in the whole row (or col-
umn), corresponding to x ∈ c (namely in all Axy at the same time);
moreover, when x ∼ x′ and x′ 6= x , transformations in the line corre-
sponding to x must be the same as transformations in the line corre-
sponding to x′ (of course, if x ∈ E , x′ ∈ F , “the same” means indeed
“contragredient”);

2. If x < x′ , it is also allowed to add rows (or columns) from the line
x multiplicated by homomorphisms from Hx to the rows (respectively
columns) of the line x′ .

For the formulation of the result we need some more definitions:
Definition 5.

1. A word is a sequence w = a0r1a1r2a2 . . . rmam , where ak ∈ X and each
rk is either ∼ or − , such that for all possible values of k :

• ak−1rkak in X .

• ak 6= ak+1 and rk 6= rk+1 .

2. Admissible words are non-symmetric words of the form:
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(i) x1 ∼ x2 − x3 ∼ x4 − x5 ∼ x6 − ...− xn−1 ∼ xn

(ii) x− x1 ∼ x2 − ...− xn−1 ∼ xn

( x 6∼ y for all y 6= x )

(iii) x− x1 ∼ x2 − ...− xn−1 ∼ xn − z
(x 6∼ y when y 6= x )
( z 6∼ y when y 6= z )

3. A word of type (ii) is called special if x ∼ x . A word of type (iii) is
called special if x ∼ x but z 6∼ z and bispecial if x ∼ x, z ∼ z . All
other words are called ordinary.

4. A word of type (i) such that xn−x1 is called a cycle. A cycle w is called
periodic if w = v − v − v − ...− v for a shorter cycle v .

Prior to giving representation of any bunch of chains, we consider the so-
called atomic problems.

Definition 6. An atomic problem is a bunch of chains such that both E
and F consist of one element: E = {x} , F = {y} , x− y .

3. Method of solution

Our method to calculate representations is the following:

1. To describe all representations of every atomic problem.

2. In general case, to consider an atomic part of a given bunch of chains and
to reduce the corresponding matrices to normal forms.

3. To restrict elementary transformations by those that do not change the
form.

4. To prove that as a result we get a new bunch of chains.

4. Atomic problems

In order to give description of the representation of any bunch of chains, let
us consider some elementary cases, which we will call “atomic problems”.

1. x 6∼ x, y 6∼ y, x 6∼ y, E = F = K .
Then we have one matrix with entries from K :

y

x

and all elementary transformations are allowed.

2. x 6∼ x, y 6∼ y, x ∼ y, E = F = K .
Again, we have one matrix with entries from K :

y

x
,

but now only conjugations are allowed.
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3. (a) x 6∼ x, y ∼ y, E = F = K .
Then we have two matrices with entries from K :

y y∗

x

and elementary transformations of rows must be common in both of
them.

(b) x ∼ x, y 6∼ y, E = F = K .
This problem is transposed to the preceding one.

4. x ∼ x, y ∼ y, E = F = K .
Then we have four matrices with entries from K :

y y∗

x

x∗

.

Elementary transformations are only allowed inside every horizontal or
vertical line.

5. (a) x ∼ x , y 6∼ y , E = K , (F : K) = 2 (so x is fat).
We have a matrix with entries from F :

F

K F .

Elementary transformations of row are allowed over K , elementary
transformations of columns are allowed over F .

(b) x 6∼ x , y ∼ y , F = K , (E : K) = 2 .
This problem is transposed to the preceding one.

6. (a) x ∼ x, y ∼ y, E = K, (F : K) = 2 .
Then we have two matrices with entries from F :

F F

K F F .

Elementary transformations of rows are common and only over K .

(b) x ∼ x, y ∼ y, (E : K) = 2, F = K .
This problem is transposed to the preceding one.

7. x ∼ x, y ∼ y, (E : K) = (F : K) = 2 .
Then we have one matrix wit entries from E ⊗K . Elementary transfor-
mations of rows (columns) are allowed over E (respectively over F ).

Remark. Cases 1, 2, 3a, 3b and 4 were considered in [2].
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5. Representations of atomic problems

Before giving a list of representations of the atomic problems, note that
they are actually partial cases of valued graphs considered by Dlab and Ringel
([5]). So we can use their results. In particular, we use the quadratic forms
corresponding to the atomic problems.

Non-formally speaking these forms show the difference between the number
of parameters defining elementary transformations and the number of entries in
matrices defining representations.

Here is the list of the quadratic forms corresponding to the atomic problems:

1. x2 + y2 − xy

2. x2 − x2 = 0

3. (a) x2+y2+y2
1−x(y1+y2) (variable y1 corresponds to the new element

y∗ )

(b) x2 + x2
1 + y2 − (x + x1)y

4. x2 + x2
1 + y2 + y2

1 − (x + x1)(y + y1)

5. (a) x2 + 2y2 − 2xy

(b) 2x2 + y2 − 2xy

6. (a) x2 + 2y2 + 2y2
1 − 2x(y + y1)

(b) 2x2 + 2x2
1 + y2 − 2(x + x1)y

7. 2x2 + 2y2 − 4xy

Definition 9. The roots of a quadratic form Q(x) corresponding to an
atomic problem are defined as follows:

• “real” roots as solutions of the equation Q(x) = 1 or, when a coefficient
2 occurs in this form, of the equation Q(x) = 2 ;

• “imaginary” roots as solutions of the equation Q(x) = 0 .

Now we go back to the results of Dlab and Ringel ([5]). From them it follows
that the dimensions of indecomposable representations are just the roots of the
corresponding quadratic form and if the dimension coincides with a real root,
there is only one indecomposable representation of this dimension. Moreover it
is the representation of general position.

We are ready to present the list of all indecomposable representations for
the atomic problems. We will skip problems number 3b, 5b, and 6b since they
are simply transposed cases 3a, 5a and 6a.

To each of these representations we associate a word w and sometimes a
primary polynomial π(t) ∈ K[t], π(t) 6= td (“primary” always means a power of
irreducible). These words will be used in the next section.

1. root (1, 1) :

1 , w = e− f
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2. imaginary root (n) (no real roots at all):

Φπ (Frobenius matrix corresponding to π(t) ),

w = e− f, π(t)

and

J0 =



0 1 0 . . . 0
... 0 1 . . .

...
...

...
. . . . . .

...
...

...
...

. . . 1
0 . . . . . . . . . 0


w = e ∼ f − e ∼ f − . . .− e ∼ f .

3. • root (1, 1, 1) :

1 1

w = e− f ∼ f

• root (1, 1, 0) :

1

(the second matrix is empty) w = e− f

• root (1, 0, 1) :

1

(the first matrix is empty) w = e− f

4. • root (n, n, n, n + 1)

1 0 . . . 0 0 1 0 . . . 0
0 1 . . . 0 0 0 1 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 1 0 0 0 . . . 1
1 0 . . . 0 1 0 . . . 0 0
0 1 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 1 0


w = f − e ∼ e− f ∼ f − . . .− f ∼ f

• root (n, n, n, n− 1)
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1 0 . . . 0 0 1 0 . . . 0
0 1 . . . 0 0 0 1 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 1 0 0 0 . . . 1
0 0 . . . 0 1 0 0 . . . 0
1 0 . . . 0 0 0 0 . . . 0
0 1 . . . 0 0 1 0 . . . 0
...

...
. . . 0 0 0 1 . . . 0

...
... . . .

. . .
...

...
...

. . .
...

0 0 . . . 0 1 0 0 . . . 1


w = e− f ∼ f − e ∼ e− . . .− f ∼ f

• root (n, n + 1, n, n + 1)

1 0 . . . 0 1 0 . . . 0 0
0 1 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 1 0 0 . . . 0
1 0 . . . 0 0 1 0 . . . 0
0 1 . . . 0 0 0 1 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 0 0 0 0 . . . 1


w = e− f ∼ f − e ∼ e− . . .− f

• imaginary root (n, n, n, n)) [
I I
I Φπ

]
w = e− f , π(t)
and [

I I
I J0

]
(up to permutation of horizontal and vertical lines)
w = e ∼ e− f ∼ f − . . .− f ∼ f

5. • root (1, 1) :
(1) w = e− f

• root (1, 2) :
(1 α) where E =< 1, α > w = e− f ∼ f

6. • root (2n + 1, n + 1, n)
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1 0 . . . . . . 0 1 0 . . . 0

0 1 . . . . . .
... α 0 . . .

...
... α . . . . . .

...
... 1 . . .

...
...

... 1
...

...
... α

...
...

...
... α

...
...

...
...

. . .
...

...
...

...
... 1

...
...

... α
0 . . . . . . . . . α 0 . . . . . . 0


w = e− f ∼ f − e ∼ e− ...− f

• root (2n + 1, n, n)

1 0 . . . 0 0 0 . . . 0

α 0 . . .
... 1 0 . . .

...

0 1 . . .
... α 0 . . .

...
... α

...
...

... 1 . . .
...

...
...

. . .
...

... α
...

...
...

...
... 1

...
...

. . .
...

...
...

... α
...

...
... 1

0 . . . . . . 0 0 . . . . . . α


w = e ∼ e− f ∼ f − e ∼ e− ...− e

• root (2n− 1, n, n)

1 0 . . . 0 1 0 . . . 0

0 1 . . .
... α 0 . . .

...
... α

...
... 0 1

...
...

...
...

. . .
...

... α
...

...
...

...
... 1

...
...

. . .
...

0 . . . . . . α 0 . . . . . . 1


w = e− f ∼ f − e ∼ e− ...− f ∼ f

• root (2n + 2, n + 1, n))

1 0 . . . 0 0 . . . 0

α 0 . . .
... 1 . . .

...
...

. . .
...

... α . . .
...

...
... 1

...
...

. . .
...

...
... α

... 0 . . . 1
0 . . . 0 1 0 . . . α
0 . . . 0 α 0 . . . 0
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w = e ∼ f − f ∼ f − e ∼ e− ...− f

• root (2n, n + 1, n)

1 0 . . . . . . 0 1 0 . . . 0

0 1 . . . . . .
... α 0 . . .

...
... α . . . . . .

... 0 1
...

...
...

...
. . .

...
...

... α
...

...

0 . . . . . . 1 0
...

...
. . .

...
0 . . . . . . α 0 0 . . . . . . 1
0 . . . . . . 0 1 0 . . . . . . α


w = f ∼ f − e ∼ e− f ∼ f − ...− f

• imaginary root (2n, n, n)

Φπ 0 . . . 0 I 0 . . . αI

0 I . . .
... αI 0 . . . 0

... αI
...

... 0 I
...

...
...

...
. . .

...
... αI

...
...

0 . . . . . . I
...

...
. . .

...
0 . . . . . . αI 0 . . . . . . I


(n odd)



αΦπ 0 . . . 0 I 0 . . . 0

0 I
...

... αI 0 . . .
...

... αI
...

... 0 I
...

...
...

...
. . .

...
... αI

...
...

...
...

... I
...

...
. . .

...
...

...
... αI

...
...

... I
I 0 . . . 0 0 . . . . . . αI


( n even)

w = e− f ∼ f − e , π(t)

7. • root (n, n + 1) 
α β 0 . . . 0 0
0 α β . . . 0 0

. . . . . .
. . . . . . . . . . . .

0 0 0 . . . α β


where E =< 1, α > , F =< 1, β >

w = e− f ∼ f − e ∼ e− ...− f ∼ f ( n odd)
w = f − e ∼ e− f ∼ f − ...− f ∼ f ( n even)

9



• root (n + 1, n) 

α 0 . . . 0

β α . . .
...

0 β
. . .

...
...

...
. . . α

0 . . . . . . β


w = f − e ∼ e− f ∼ f − ...− e ∼ e (n odd)
w = e− f ∼ f − e ∼ e− ...− e ∼ e ( n even)

• imaginary root (n, n) :
αI βI 0 . . . 0
0 αI βI . . . 0
...

...
. . . . . .

...
0 0 0 . . . βI

βΦπ 0 0 . . . αI


w = e ∼ e− f ∼ f , π(t) .

6. Reduction

This section is, perhaps, the most important. It shows that when we reduce
an atomic part of a bunch of chains X = {E ,F , <,−,∼} and restrict elementary
transformations by those which do not change the canonical form of this part,
we obtain again representations of a (new) bunch of chains. Namely, we can
formulate the following rule to construct this new bunch of chains:

1. Choose a minimal element e ∈ E and a minimal element f ∈ F such that
e− f . Set E− = E \ {e}, F− = F \ {f} .

2. Consider the atomic problem defined by the bunch ({e}, {f}) (with the
inherited relation ∼ ); call such a problem an atomic part of X .

3. Find the set S of all words corresponding to the indecomposable repre-
sentations of this atomic problem

4. Construct the sets E+ and F+ by the following procedure:

(a) if there is x ∈ E− such that x−w or w−x is possible, but there is
no y ∈ F− with this property, then w ∈ F+ ; in this case set w− x
for all elements x ∈ E− with this property;

(b) if there is x ∈ F− such that x−w or w−x is possible, but there is
no y ∈ E− with this property, then w ∈ E+ ;; in this case set w− x
for all elements x ∈ F− with this property;

(c) if there are both x ∈ E− such that x− w or w − x is possible and
y ∈ F− with the same property, consider two new symbols we, wf

and add we to E+ , wf to F+ ; in this case set we ∼ wf , we − y
for all y ∈ F− and wf − x for all x ∈ E− with this property; set
also we ∼ wf ;
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(d) proclaim w fat if EndAw/rad EndAw 6= K , where Aw is the cor-
responding representation;

(e) proclaim w double if w ∼ w , or w ∼ w◦ , or w◦ ∼ w where w◦ is
the inverse word;

(f) for two words w, v ∈ E+ (or in F+ ), set w < v if there is a non-zero
homomorphism Aw → Av (respectively Av → Aw );

(g) every word w ∈ E+ t F+ inherits all relations <,−,∼ which the
elements e, f had with all other elements of X ; moreover, if w ∈ E+ ,
then e < w , if w ∈ F+ , then f < w ; if there are both we and wf ,
then e < we and f < wf ;

(h) delete the pair e− f from the relation − .

5. Set E ′ = E t E+ , F ′ = F t F+ and X ′ = {E ′,F ′, <′,−′,∼′} , where
<′,−′,∼′ denote the modified relations <,−,∼ .

7. Result

Theorem 1. Let ({e}, {f}) be an atomic part of X , X ′ constructed as
above and R = {Aw |w ∈ S, w /∈ E+,F+ } . Then X ′ is again a bunch of
chains and the indecomposable representations of X which do not belong to
R are in one-to-one correspondence with the indecomposable representations of
X .

Proof. The proof consists in a direct verification of this statement in each
case of atomic problems described in Section 3. Therefore, we give it here only
in two typical cases (the first one when the atomic problem has finitely many
indecomposables, the second one when it has infinitely many indecomposables).

Case 1 (atomic problem of type 5a): f ∼ f is fat, e 6∼ e ; E = Ec = 〈 1, α 〉 ,
where c is the θ-class of e , Fc = K .

The set S consists of two words v = e − f and w = e − f ∼ f . The
corresponding representations are:

Av = (1), Aw = (1 α).

In this case, neither v − x nor x− v is possible, while w − x for any element
x ∈ E such that x− f . Hence, E+ = E , F+ = F t {w} , f < w and w < f ′

if f < f ′ .
One easily sees that if the representation Av is in the atomic part of a

representation B of X , it splits out as a direct summand: B ' Av ⊕ B′ .
Hence, if B is indecomposable, then B = Av . If the representation B has Aw

in its atomic part, then, using elementary transformations, one can make zero
the whole row, in which Aw occurs, as well as one of the two corresponding
columns, say, that where α stands. Hence, the representation B is of the form:

B =

I αI 0 0
0 0 0 Be

Bw 0 Bf B̃

,
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where the matrix in the per left corner correspond to the pair e−f . One checks
immediately that the following elementary transformations do not change this
shape:

1. “Old” transformations of all rows (columns) not belonging to the lines
under 1, α , i.e., those inherited from the original problem.

2. One can add columns of Bf multiplied by elements of E to the columns
of Bw .

3. Moreover, one can add columns of Bf multiplied by λα ( λ ∈ K ) to the
columns of Bw . To do so, one has first to add this column multiplied
by λ to the corresponding column under αI and then to make the latter
zero with the help of the corresponding row of αI .

4. Just in the same way, if f < f ′ , one can add columns of Bf multiplied
by any element from E to columns of B̃ .

But it is just the definition of representations of the new bunch of chins X ′ and
their equivalence.

Case 2 (atomic problem of type 6a): e ∼ e is fat, f ∼ f is double, Ec = K ,
Fc = F = 〈 1, α 〉 .

Here S consists of the following words:

tn = e− f ∼ f − e ∼ e− . . .− f,

un = e ∼ e− f ∼ f − . . .− e,

vn = e ∼ e− f ∼ f − . . .− f,

wn = f ∼ f − e ∼ e− . . .− e,

zn = f ∼ f − e ∼ e− . . .− f.

Denote the corresponding representation, respectively, by Tn, Un, Vn,Wn, Zn .
In this case un, vn ∈ E+ , wn, zn ∈ F+ , while neither tn − x nor x− tn for

any n . On the other hand, one can easily see that:

• if Tn occurs in the atomic part of a representation A of X , then it splits
out;

• if Un or Vn occur, then one can make all corresponding columns and all
but one (any) row zero; denote this row by un or vn , respectively;

• if Wn or Zn occur, then one can make all corresponding rows and all but
one (any) column zero; denote this column by wn or zn , respectively;

• one can add the row un to the rows um and vm if m < n , as well as
the rows of vn to the rows um if m ≤ n and to the rows vm if m < n ;

• one can add the column zn to the columns zm and wm if n < m , as well
as the columns of wn to the columns zm if n ≤ m and to the columns
wm if n < m ;

• one can add the columns and rows corresponding to zero columns, respec-
tively rows, of the matrix Aef to all other columns, respectively rows;
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• one can add the columns (respectively rows) of Wn and Zn (respectively
Un and Vn to columns corresponding to any f ′ > f (respectively to rows
corresponding to any e′ > e ).

It means that the remaining part of the representation A can be considered
just as a representation of the bunch X ′ , which accomplishes the proof.

Remark. Note that this proof is completely effective: one can recursively
deduce from it an explicit form of matrices defining all indecomposable repre-
sentations of any bunch of chains.

Now we are ready to present the main theorem.
Theorem 2. Indecomposable representations of a bunch of chains are given

by the following data:

1. String data that are one of the following:

(i) non-symmetric ordinary words;

(ii) pairs (w, δ) , where w is a special word and δ ∈ {1, 2} ;

(iii) quadruples (w,m, δ1, δ2) , where w is a non-symmetric bispecial word,
δi ∈ {1, 2}, m ∈ N .

2. Band data that is a pair (w, f(t)) , where w is a non-periodic cycle
defined up to a cyclic shift and f(t) 6= td is a primary polynomial over
K (i.e. a power of an irreducible one).

This theorem follows from the list of representations of the atomic problems
and theorem 1.

7. An application

As we have mentioned, there are many possibilities of applying this class of
matrix problems. We present one example that can now be obtained just as its
partial case for algebras over an algebraically closed field in [6].

Corollary 3.The category of finite length modules over a complete local
noetherian ring R is tame if and only if R is isomorphic to a factor-ring of
a “singularity of type” A1 that is of a ring A that is either a dyad of two
discrete valuation rings [9] or a subring of a discrete valuation ring D such
that rad A = rad D and D/rad D is 2-dimensional over A/rad A . Otherwise
it is wild.
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