ðHgeocities.com/csindulkar/rootlocus.htmlgeocities.com/csindulkar/rootlocus.htmlelayedxGŽÕJÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÀ?‘· OKtext/html`ª'9n· ÿÿÿÿb‰.HSun, 20 Jun 2004 11:05:39 GMTÅMozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)en, *@ŽÕJ·  Root Locus Methods

Root Locus   Methods

 

Design of  a position control system using the root locus method

 

Design of a phase lag compensator using the root locus method

The root locus procedure

 

To determine the value of the gain  at the limit of stability using root locus

Breakaway point and the limiting value of gain for stability

Breakaway point and the limiting value of gain for stability

Root locus analysis when G(s) contains a zero

 

Root locus plot  giving the number of asymptotes, centroid, and the frequency at which the locus crosses the imaginary axis

 

Design the value of K in the  velocity feedback loop to limit the overshoot for a step input using root locus

 

 

To determine the s co-ordinate  when the imaginary co-ordinate at some point, w on the root locus is given

 

 

 

 

 

Objective Type Questions

 

 

 

 

Problem 4.1: Design of a position control system using the root locus method

 

(a)     State the functions of the proportional, integral and derivative parts of a PID controller.

(b)   Fig. 1 shows a position control system.

 

G(s) =       60

                  s(s+2)

 

  +           +

G(s)

                                                             C(s)

 


R(s)       -          -

a s

 

 

 

 

 


Fig.1

 

Determine the value of a in the velocity feedback loop so that the damping ratio x of the closed loop poles is 0.5.Use the root locus method.

 

 

 

Solution:

 

The characteristic polynomial of the system with velocity feedback is

 

F(s) = s2+(60a+2)s+60

 

= ( s2+2s+60)+60as

 

Draw the root locus for

 

60as

s2+2s+60

 

 and determine a for x=0.5

 

                                                                                 jw

                                                             X

 

 


                                                                                                                           s

                                                                   60 deg

 

                                    X=poles

                                                              X

 

a for desired root location is .0958 (Answer)

 

 

 

TOP

Problem 4.2: Design of a phase lag compensator using the root locus method

 

(a) Write down the steps necessary for the design of a phase-lag compensating network for a system using the root locus method.

 

(b)The uncompensated  loop  transfer function  for a system is

 

GH(s) = K/[s(s+2)].

 

 (i) Use root locus method to design a compensator so that the damping ratio of the dominant complex roots is 0.45 while the system velocity constant, Kv is equal to 20.

(ii) Find the overall gain setting

 

Solution:

 

 (a) Theory

 

 (b)           Uncompensated root locus is a vertical line at s =-1 and results in a root on the ξ line at s = -1 + j2 as shown below.

 

 


 

       ξ=.45

 

 

K= 5

 

 

 

j2

 

     jw

j1
                                                                -2        s                                 0

 

Measuring the gain at this root, we have K = (2.24)2 = 5

 Kv of uncompensated system = K/2 =5/2 =2.5

Ratio of zero to pole of compensator is      │z/p│ = α = Kvcomp/Kv uncomp =20/2.5 = 8

Examining the following Fig, we find that we might set z =-0.1 and then p = -0.1/8. The difference of the angles  from p and z  at the desired root is approx 1 0, and therefore s =-1+j2 is still the location of the dominant roots.

ξ=.45

                                                                                                                                       j2

Desired root

location

 

 

 

 

 

 

 

      

 

 

 

 

 

Compensated root locus

 

 

 

 

 

j1

 

 

 

 

 

 


                                           -2                                            -1                                        0       

 

                                                                                                               -z                  -p

 

 

                  Sketch of the compensated root locus is shown above.

Compensated system transfer function is

Gc(s)GH(s) = 6(s+0.1)/[s(s+2)(s+0.0125)],

 

where (K/α) 5 or K=40 in order to account for the attenuation of the lag network.

 

TOP

 

Problem 4.3:  The root locus procedure

 

i           Plot the root locus for the characteristic equation of  a system when

 

1+ K/[s(s+2) (s+2+j2) (s+2-j2)] = 0

 

as K varies from zero to infinity.

  1. Determine the number of separate loci.
  2. Locate the angles of the asymptotes and the centre of the asymptotes.
  3. By utilizing the Routh-Hurwitz criterion, determine the point at which the locus crosses the imaginary axis.
  4. What is the limiting value of gain K for stability?

 

 

Solution:  i

 

 

                                                                                                        jw

                                                                                                                 j 4

 


                                                                                                               j3

 


                                                                                                                j2

                                                                                                                 j

                                                                                                                

 


                                    -6                     -4                    -2        -1            0

                                                                                                                -j

 


                                                                                                                 -j2

                                                                                                                 -j3

 

                                                                                                                   -j4

 

 

 

(ii) separate loci =4

(iii)               Angles of asymptotes= 45,135,225,315 degs.

Centre of asymptotes= (-2-2-2)/4=-1.5

 (iv)

Charac.eqn.

s(s+2) (s2+4s+8) +K=0

Apply RH criterion for stability and obtain K crit.

 

S4

1

12

K

S3

6

8

 

S2

32/3

K

 

S1

8-(9K/16)

 

 

S0

K

 

 

 

(v) Kcrit = 14.2 and roots of the auxiliary eqn are

 

10.66s2+14.2 = 10.66(s2+ 1.33) = 10.66(s+j1.153) (s-j1.153)

The locus crosses the im axis at j1.153 and –j1.153

 

 

 

 

 

TOP

 

 

 

Problem 4.4:  To determine the value of the gain  at the limit of stability using root locus

 

The open loop transfer function of a unity feedback system is:

 

 

G(s) =             K

                      s(s+1)(s+2)

 

i.                     Draw the root locus and the asymptotes on the plot

ii.                   Calculate the value for the asymptote centroid.

iii.                  Calculate the number of asymptotes

iv.                 Calculate the value of w at which the locus crosses the imaginary axis, and find the corresponding value of K at the limit of stability

v.                   Find the value of K required to place  a real root at s =

-5.

For this value of K, find the location of  the complex roots.

 

 

Solution:

 

 

 (i)

 


2.5

 


2

1.5      Im.                                                                                                                 w=Ö2

          Axis

1

 


0.5

 

0                            

               -3      –2.5      -2      -1.5     -1       -.5       0      0.5       1

                                 Real Axis

 

 (ii)sP= -3/3 = -1

 

(iii) 3 asymptotes @  -600, 600, -1800

 

(iv)              w=Ö2

 

 K= 6  @ stability limit

 

(v)                K= 60,

 

Roots are @ s= -5,1-j3.32, 1+j3.32

 

TOP

 

Problem 4.5 : Breakaway point and the limiting value of gain for stability

 

Construct the root locus for the control system shown in Fig.2. Follow the following six

steps:

                  (i)      Locate the poles on the s-plane.

                (ii)      Draw the segment of the root locus on the real axis.

               (iii)      Draw the three separate loci.

              (iv)      Determine the angles and the center of the asymptotes.

                (v)      Evaluate the breakaway point for one of the loci.

              (vi)      Determine the limiting value of the gain K for stability using the Routh-Hurwitz criterion.

 

 

 

 

 

 

               K

        s(s+4)(s+6)

R(s)                                                                                C(s)

 


+      -

 

 

 

 


Fig.2

                       

Solution:

 

-Characteristic eqn.   s(s+4)(s+6)+K=0.

Poles are at s= 0, -4, -6. There are no zeros.

On the real axis, there are loci between the origin and –4 and from –6 to –infinity.

Asymptotes intersect the real axis at

s =[0+(-4) +(-6)]/3 =-3.333

Angles of asymptotes are +/- 60 deg. and 180deg.

To determine breakaway point, note that

-K = s(s+4)(s+6) K=240

-dK/ds = 3s2+20s+24= 0

Therefore, the breakaway point is   on the real axis at s=-1.57.

 

 

 

 

 

 

 

                                                                                         0

    -12         -10         -8       - X 6         X -4       -2          X

0

 

 

 

 

 

 


                                                                                         K= 240

 

 

 

The application of Routh’s criterion to the characteristic equation

 

s(s+4)(s+6)+K =0   gives the following array:

 

 

s3                 1                        24           0   

s2          10                          K           0

s1                240-K/10              0

s0                K

 

The value of K which makes the rows1 vanish is K=240. This is the limiting value of K for stability.

TOP

 

Problem 4.6: Breakaway point and the limiting value of gain for stability

 

Plot the complete root locus of the following characteristic equation of a system, when K varies from zero to infinity.

 

1                          +                     K    = 0.

                              s(s+4)(s+4+j4)(s+4-j4)

                       

 

Follow the following seven steps:

 

i.                     Locate the poles on the s-plane

ii.                   Draw the segment of the root locus on the real axis

iii.                  Draw the four separate loci

iv.                 Determine the angles and the center of the asymptotes.

v.                   Evaluate the breakaway point for one of the four loci.

vi.                 Determine the limiting value of the gain K for stability using the Routh-Hurwitz criterion.

vii.                Determine the angles of departure at the complex poles.

 

Solution:

 

 

 

 

 

 

 

 


                             -6              -5         -4          -3           -2     -1

 

 

 

 

 

 

 


·        -four separate loci

 

f  =(2q+1)/4,   q =0,1,2,3

 

f =45,135,225,315 deg.

 

asymptote center =  ( -4-4-4)/4 =-3

 

·        Breakaway point is obtained from

 

K =p(s) =-s(s+4) (s+4+j4)(s+4-j4) between s= -4 and s=0

 

Search s for a maximum value of p( s) by trial and error . It is approximately s=-1.5

 

·        Write the characteristic equation and Routh array.  Limiting value for stability is K=570

·        Angle of departure at complex poles  is obtained from the angle criterion.

 

Angles are  90,90,135 and 225 deg.            

TOP

 

Problem 4.7:  Root locus analysis when G(s) contains a zero

 

 

(a)       Suggest a possible approach to the experimental determination of the frequency response of an unstable linear element within the loop of a closed-loop control system.

(b)       Fig.3 shows a system with an unstable feed-forward transfer function.

 

 

 

 

R(s)                                                                                  C(s)

  10(s+1)

   s (s-3)

   +

                                                                                                  

-    

 

                   

 

Fig.3

Sketch the root locus plot and locate the closed loop poles. Show that although the closed-loop poles lie on the negative real axis and the system is not oscillatory, the unit-step response curve will exhibit overshoot.

Solution:

(a)

 

Measure the frequency response  of the unstable element  by using it as part of a stable system. Consider a unity feedback system whose OLTF is  G1*G2.. Suppose that G1 is unstable.. The complete system can be made stable by choosing  asuiatble linear element G2. Apply a sinusoidal signal at the input.. Meausure the error signal e(t), the input to the unstable element, and x(t) the output of the unstable element. By changing the frequency and repeating the process , it is possible to obtain the frequency rsponse of the unstable element.

 

(b)

 

Root locus is shown below:                                   jw

 

-2

Closed loop poles

 

 

 


                                                                                                                      s

                 -6               -4               -2                                         2                     4   

 

 

 

Closed loop zero

 

 

 

 

Closed loop transfe function is C(s)/R(s) =10(s+1)

                                                                     s2 +7s +10

Unit step response of the system is

C(t) = 1+1.666exp(-2t) –2.666exp(-5t)

 

 

 


C(t)                                       Rough sketch-Actual values may be plotted.

 

 

 

 

 

 

                                                                                                                      t          

 

 

Although the system is not oscillatory, the response exhibits overshoot. This is due to the prsence of  azero at s=-1.

TOP

 

Problem 4.8: Root locus plot  giving the number of asymptotes,centroid, and the frequency at which the locus crosses the imaginary axis

 

 (a)       Draw the root locus plot for a unity feedback system with

 

G(s) =       K   .

            s(s+5) 2

 

Calculate and record values for the asymptote centroid, number of asymptotes, and value of the frequency, w at which the locus crosses the imaginary axis. Also, show the asymptotes on the plot.

 

(b) How would you obtain qualitative information concerning the stability and performance of the system from the root locus plot?

 

 

 

Solution:

(a) Poles at s=0, two at s=-5. Root locus crosses imaginary axis at w=5

Centroid at –10/3=-3.33

Three asymptotes at (=/-) 60deg., -180deg

K= 250 at stability limit

(b) Descriptive

TOP

 

Problem 4.9: Design the value of K in the  velocity feedback loop to limit the overshoot for a step input using root locus

 

 

An ideal instrument servo shown in Fig.4 is to be damped by velocity feedback. Maximum overshoot for a step input is to be limited to less than 25%.

 

      625

        s2

    R      +          +                                                         C                                                             

                 -        -              

                             

      Ks

       

                                                                   

 

 

 


Fig.4

(a)    Design the value of K using the root-locus method.

(b)   Determine the step response  for the designed value of K.

 

Solution:

 

  System without velocity feedback:

 

625

                                  s2 +625        roots s=-/+ j25

Open loop Bode  diagram magnitude curve is a straight line with slope of –40dB/decade, crossing 0dB at w=25

With velocity feedback added the root locus is as shown with K as the gain.

OLTF   = 625/s2      =  625

                   1+(625Ks/s2)      s(s+625K)

 

 


                     27                                                                                          K

                     25

                    22.5                                                       ..

                    20

 

 

 

 

                               Root at –12.5 +j21.65

                               wn= 25

 

 

                        -30                                                -12.5                              -2.5    0

 

By inspection, any desired value of x is available. Choosing x =0.5 to get  Mpt < 1.25.

 

Mpt= 1+ exp(-PI x/sqrt(1-x2))   =1.163 for x =0.5

 

K= .04 and roots are at s= -12.5+ j 21.65

 

Step response:

 

 

C(t) = 1- exp(-xwn T) sin( wn sqrt(1-x2)+ tan-1(sqrt(1-x2)/ x)   )

                 sqrt(1-x2)

 


                                                   C(t)

 

 

t

 

                                                                                                                                  

TOP

 

Problem 4.10:  To determine the s co-ordinate  when the imaginary co-ordinate at some point, w on the root locus is given

 

 

                (a)            Give the value of w where the root locus of

 

                                   G(s) =               K

           

                                                (s+1) (s+1-j)(s+1+j)

crosses the imaginary axis.

 

               (b)            Give the values of  s where the root locus of

 

                                   G(s) =  K(s+1)(s+5)

           

                                                    s2(s+2)

leaves and re-enters  the real axis.

 

                (c)            Draw the root locus for

                        G(s)=                   K(s+2)

 


                                                       s(s+1) (s+5) (s+8)

 What is the s co-ordinate when the imaginary co-ordinate at some point  is w = 1.5?

 

Solution:

 

 

 

 

TOP

 

 

Objective Type Questions

 

 

 

(i) The root locus  in the s-plane follows a circular path when there are

 

(a) two open loop zeros and one open loop  pole

(b) two open loop poles and one open loop  zero

( c ) two open loop poles and  two open loop  zeros

 

Ans: (b  )

 

(ii) The algebraic sum of the angles of the vectors from all poles and zeros to a point  on any root locus segment  is

 

(a) 1800

(b) 1800 or odd multiple thereof

(c )1800 or even multiple thereof

 

Ans: (  b)

 

 

(iii) The algebraic sum of the angles of the vectors from all poles and zeros to the point on any root-locus segment is

 

(a) 1800

(b) 1800 or odd multiple thereof.

(c ) 1800 or even multiple thereof

(d) 900 or odd multiple thereof.

 

Ans: (  d)

 

 

(iv) Whenever there are more poles than  zeros in the open loop transfer function G(s), the number of root locus segments is

 

(a)      Equal to the number of zeros

(b)      Equal to the number of poles

(c)      Equal to the difference between the number of poles and  number of zeroes

(d)      Equal to the sum of the number of poles and  number of zeroes.

 

Ans: (b)

 

                       

 

(v)    If the number of poles is M and the number of zeroes is N, then the number of root-locus segments approaching infinity is equal to

 

(a)        M+N

(b)        M/N

(c)        MN

(d)        M-N

 

Ans:(  d )

 

(vi ) If the system poles lie on the imaginary axis of the s-plane, then the system is

 

(a)    stable

(b)   unstable

(c)    conditionally stable

(d)   marginally stable

 

Ans:( d  )

 

( vii ) The Routh array for a system is shown below:

 

s3

1

100

s2

4

500

s1

25

0

s0

500

0

 

How many roots are in the right-half plane?

 

(a)      One

(b)      Two

(c)      Three

(d)      Four

 

Ans:(  b )

 

 

 

TOP