ðHgeocities.com/csindulkar/digitalcontrolsystems.htmlgeocities.com/csindulkar/digitalcontrolsystems.htmlelayedx'ŽÕJÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÀ?‘Ê¡OKtext/htmlpa'9nÊ¡ÿÿÿÿb‰.HSun, 20 Jun 2004 09:37:10 GMT½Mozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)en, *ŽÕJÊ¡ Digital Control Systems

Digital Control Systems

 

Impulse response of a sampled data system

 

 

Characteristics of a digital controller (in the difference equations form) to give  a specified  response of the system to a unit step function.

 

 

Position servo operated by a sampler and a zero order hold

 

 

To obtain the state equation of a discrete data system  described by its difference equation

Solution of the discrete time model of a system

To obtain the state equation of a discrete data system  described by its difference equation

Discrete model of the tape-drive system  when a digital controller is used

 

Examples of discrete and continuous signals

Stability of  a discrete time system using bilinear transformation

Stability from the characteristic polynomial corresponding to the pulse transfer function of a sampled data system 

 

Position servo operated by a sampler and a zero order hold

 

Examples of discrete and continuous signals

Drawing  the simulation diagram of a system represented  by the transfer function G(z

To obtain the equivalent discrete time equation from the state space description of a continuous time plant

The z-transform

Pulse transfer function of  a discrete time system

 

 

 

OBJECTIVE TYPE QUESTIONS:

 

 

 

Problem 9.1: Impulse response of a sampled data system

 

    1/[s(s+1)]

Zero-order hold

Obtain the unit impulse response of the open-loop sampled data system shown in Fig.1

 

 

             r(t)                    T=1   r*(t)                                                       Process                c(t)

 

 

 

 

 

 

Fig.1

Solution:

 

From Fig.

G(s)=(1-exp(-st))/[s2(s+1)] =(1-exp(-st))[1/s2 –1/s +1/(s+1)]

 

G(z)= Z{G(s)}(1-z2)Z{1/s2 –1/s +1/(s+1)}

 

For T=1, we therefore have

 

G(z)= z exp(-1)+1-2exp(-1)     =  0.3678z+0.2644

         (z-1)(z-exp(-1))                 z2-1.3678+.3678

 

For unit impulse R(z) = 1 so that C9z) =G(z)

 

Dividing denominator into the numerator, we get

 

C (z) = .3678z-1 + .7675 z-2 + .9145 z-3 +…

 

The response is

 

C(0)=0

C(T)= .3678

C(2T)= .7675

C(3T)= .9145 etc.

TOP

Problem 9.2: Characteristics of a digital controller (in the difference equations form) to give  a specified  response of the system to a unit step function.

 

Fig. 2 shows a digital control system.

 

 

Digital controller

 


Hold

Plant

r(t)     +       e(t)    e*(t)                     m*(t)                 m(t)                    c(t)

                                                               

            -                    

 

 


Fig. 2

 

(a) Show that the  z transform, D(z), of the digital controller  is given by

 

D(z) = [1/G(z)].[C(z)/R(z)]/[1 – {C(z)/R(z)}]

 

 where G (z) is the z transform of zero order hold and plant.

 

(b)The transfer function of the plant is

 

(s+2)/[s(s+1)].

 

Determine the characteristics of a digital controller (in the difference equations form) such that the response of the system to a unit step function will be c (t) = 5(1-e-2t). The sampling period is 1 s.

Use the following table of Laplace and  z transforms.

 

 

Time function -Laplace transform-Z transform

 

u (t)-1/s-z/(z-1)

t-1/s2-zT/(z-1)2

e-at-1/(s+a)-z/(z-e-aT)

 

Solution:

 

For the plant and zero order hold G(s) = G1(s)G2(s) = (1- e-Ts)   (s+2)/[s2(s+1)]

 

G1(s) = 1-e-Ts.

 

G2(s) = (s+2)/s2(s+1) =(2/s2)-(1/s)+(1/(s+1))

 

G(z) =[(z-1)/z]{ [2z/(z-1)2] –[z/(z-1)]+[z/(z-.368)]

 

=(1.368z-0.104)/(z2-1.368z+0.368)

 

For

C(s) =5[(1/s)-(1/(s+2))],

 

Then C(z) =5[((z/(z-1)) –(z/(z-0.135))] = 4.32z/[(z-1)(z-0.135)]

 

C(z)/R(z) =4.32/(z-.135) and  1-(C(z)/R(z)) =(z-4.45)/(z-.135)

 

D(z) =[z2-1.368z+.368]/[1.368z-.104].[4.32/(z-4.45)]

 

= [4.32z2-5.91z+1.59]/[1.368z2-6.202z+.46]

 

Dividing numerator and denominator by 1.368z2 and cross-multiplying gives

 

M(z) -4.53z-1M(z)+.34z-2M(z) =3.16E(9z)-4.32z-1E(z) +1.16z-2E(z)

 

Inverting gives the controller characteristics

 

m(k) =4.53m(k-1)-.34m(k-2)+3.16e(k)-4.32e(k-1)+1.16e(k-2)

 

TOP

 

Problem 9.3: Position servo operated by a sampler and a zero order hold

 

 

(a)    Derive a state variable equation for  a system governed by the second –order difference equation

 

c(k+2)+3 c(k+1) +2 c(k)

 

where u (k) is the input and c (k) is the output.

 

(b)   Fig.4 shows a position servo operated by an input via a sampler and a zero order hold with the position c and velocity dc/dt represented by x1and x2 respectively. If the states at the sampling instants  alone are required ,determine the A and B matrices in the following equation

 


x1(k+1)   =    [A ]      x1(k)     + [B] u(k)

                                                             x2 (k+1)                      x2(k)

 

 

 

Process

2/(s2+3s+2)

Zero-order hold

u(t)             u*(t)                                                              c(t) = x1             x1(kT)

                    

             T                                                                        dc(t)/dt = x2      x2(kT)

 

                                                                                                           T

Fig.4

Solution:

 

 (a)

 

 Let x1(k) =c(k)

 

X2(k) = x1(k+10 =c(k+1)

 

Then x1(k+1) = x2(k)

 

X2(k+1) =-2x1(k)-3x2(k0+u(k)

 

Then in matrix form:

 


X(k+1) =  0      1       x(k) +  0   u(k)

                -2    -3                   1

 

(b)

 

 X(k+1) =  j(T) x(k) + Y(T) u(k)

 


j(T) =L-1(sI-A)-1=               s      -1     -1

                                             2     s+3

 


=       2e-t  -e-2t         e-t  -e-2t

        -2e-t  +e-2t       -e-t +2e-2t

 

 

Thus j(T)  =       2e-T  -e-2T         e-T  -e-2T

                          -2e-T  +e-2T       -e-T +2e-2T

 

                               T

Also Y(T) = ò j(ג)   b. d ג

                     0

 

 

 

                           T

                   

                =       2e-ג  -e-2ג          e-ג  -e-2ג                            0             d ג

                         -2e-ג  +e-2ג       -e-ג +2e-2ג                       1

        

               0       

 


              =      0.5 -e-T  + 0.5 e-2T      

                       e-T  - e-2T      

 

Setting T =1,

 


j(T) = 0.6005       0.2326

           -.4652        -0.0973

 

 


Y(T) = 0.1998

            0.2326

 

 


x(k+1)   =  0.6005        0.2326    x(k) +             0.1998       u(k)

                 -.4652        -0.0973                          0.2326

TOP

 

Problem 9.4: To obtain the state equation of a discrete data system  described by its difference equation

 

(a)    Write a short note on the existence and uniqueness of the solution of state equations.

 

(b) A discrete –data system is described by the difference equation

 

c (k+2) +5c(k+1) + 3c(k) =u (k+1) +2u(k)

 

where u (k) is the reference input and c (k) is the output. Show that the state equation of the system is

 

 

 


x (k+1)         =     0      1   x (k)    +    1   u (k)

                            -3   -5                    -3

 

 

Assume zero initial conditions and describe the technique used to arrive at the above equation.

 

Solution:

 

 (b)

 

Taking z-transform of the difference equation, and assuming zero initial conditions yields

 

Z2 c (z)+5z c (z) +3c(z)=zu (z) +2u(z)

 

c (z)/u (z) =(z+2)/(z2+5z+3)

 

Characteristic eqn;

 

Z2+5z+3 =0

 

Define the state variables as   x1 (k)= c (k), x2 (k)= x2 (k+1)- u (k),

 

Substitution of the state variables into the original difference eqn. gives

 

x1 (k+1)=x2 (k) + u (k),

 

x2 (k+1)= -3 x1 (k)-5 x2 (k)-3 u (k),

 

TOP

 

Problem 9.5: Solution of the discrete time model of a system

 (a)      Fig.5 shows the block diagram of a control system with feed forward and feedback paths. Apply Mason’s rule to determine the transfer function, C(s)/R(s).

G2

H

G1

 

 

 

 

 


                                                                            +

R(s)    +                                                     +                                 C(s)

 

                     -

 

 

 

 

Fig.5

(b)       A discrete-time model of the population of undergraduate students in an engineering college is:

 


x1 (k+1)        0.1    0         0          0              x1 (k)          1      u (k+1)

x2 (k+1)   =   0.7    0 .1     0          0              x2 (k)   +     0

x3 (k+1)        0       0.82    0.08     0              x3 (k)          0 

x4 (k+1)        0       0         0.85     0.02         x4 (k)          0

 

 

 


       y (k) =  0         0         0          0.97

 

In the above, xi (k) is the number of students in the ith year of the four-year degree program in academic year k, u (k) represents the input (that is, the enrollment in the first-year class in year k) and y (k) is the output (that is, the number of students graduating in year k).

 

In July 1992, the college had 188 students in the first year class, 126, in the second year class, 103 in the third year class, and 72 in the fourth year class.

The table below gives the history of admissions to the first year class in the subsequent years.

 

Year-1993-1994-1995-1996-1997-1998-1999

Admissions-275-320-350-400-450-450-430

 

Use this model to determine the number of students graduating in May of each year from 1994 to 2002.

 

Solution:

 

  (a) There are two forward paths from R(s) to C(s), with transmittance G1 and G2. There is on loop with transmittance –G1H, and this is touching both the forward paths. Hence,

 

C(s)/R(s) = (G1+G2)/(1+G1H)

 

(b) The discrete –time model may be written as

 

x (k+1) = F.x (k) +G.u (k)

y (k+1) = C.x (k+1)

 

From the given data,

 

x (1992)= 

 

        188

        126

        103

         72

 

u (1993)=275, u (1994)=320,u (1995)= 350,u (1996)=400, u (1997)=450, u (1998)=450,

u (1999)=430.

 

Y (1994)=C [(Fx (1992)+G.u ((1993)] = 86 (Rounding off as integer)

Y (1995)= C [(Fx (1993)+G.u ((1994)] = 94

Y (1996)= C [(Fx (1994)+G.u ((1995)] = 107

Y (1997)= C [(Fx (1995)+G.u ((1996)] = 159

Y (1998)= C [(Fx (1996)+G.u ((1997)]= 196

Y (1999)= C [(Fx (1997)+G.u ((1998)] = 220

Y (2000)= C [(Fx (1998)+G.u ((1998)] =249

Y (2001)= C [(Fx (1999)] =281

                                                     These are not affected by u (2000) and u (2001)

Y (2002)= C [(Fx (2000)] =290

 

TOP

 

Problem 9.6: To obtain the state equation of a discrete data system  described by its difference equation

 

 

 (a) Derive a state variable equation for a system governed by the second-order difference equation:

 

c (k+2) +3c(k+1)+4c(k) = u (k)

 

where u (k) and c (k) are the input and output signals respectively. Write the values of the A, B, C, D matrices.

 

Draw the block diagram of the system, showing the A, B, C, D matrices on it.

 

 


(b) The A, B, C, D matrices of a single input-single-output system are:A =  0    1      ,B=   0

                                                                                                                 3    -4              1

 

C= [1    0 ]    D=0

 


If the input is zero, and x (0) = 0,

                                                  1

solve for x (k) and y (k), k= 1,2,3,4 etc.

 

Solution:

 

 (a) Set x1 (k) =c (k)

and x2 (k) =x1 (k+1)=c (k+1). Then we have

X1 (k+1) = x2 (k)

X2 (k+1) =-4x1(k)-3x2(k)+u (k)

In matrix-vector form, x (k+1) =Ax (k)+Bu (k)

 


And y (k) =Cx (k) where A =  0    1      B=  0        C  = 1   0   , D = 0

                                               4   -3             1

 

 

 

 

Unit delay

T=1

C

B

                              x (k+1)                      x (k)                                  y (k)

u (k)

A

 

 


Double arrow

 

 

 

 

 (b)

 

As u (k) = 0, we have

 


x (k+1) =Ax (k) with x (o)=  0   

                                 1

x (1) =  1   

             4                                

x (2) = -4   

        13                                

 

x (3)=  13   

            40   

                          

x (4) = -40   

     121        and y = (0, 1, -4, 13,  -40 etc)

 

 

TOP

 

Problem 9.7: Discrete model of the tape-drive system  when a digital controller is used

 

 (a)Fluid flowing through an orifice can be represented by the non-linear equation

Q = K (P1-P2) ½

 


Q                 P1                                            P2

 

 


Fig.6

 

Fig.6 shows the variables, and K is a constant. Determine a linear approximation to the fluid flow equation.

 

(b) A slack loop is maintained between two sets of drive rolls, Fig.7, in a certain computer tape deck.

 

O

O

               W1(t)                                           W2(t)

 

O

O

 

 

 


                                                                 L (t)

 

 

 


Fig.7

 

All rolls have diameter D. Under normal operating conditions drive speeds are W1(t)= W2(t)= W’ and slack loop length  is L (t) = L’. Starting at time t0, there are small independent variations in the drive speeds  so that W1(t)= W’ +w1(t) and W2(t)= W’ +w2(t). Derive an expression for the resulting change in the loop length l (t).

(c)        Obtain a discrete model of the tape-drive system described in Part (b) when a digital controller is used,

 

(i)   assuming that wi =(wi) des, i = 1,  2.Neglect roller dynamics.

(ii)  assuming that wi   and (wi) des are related by the differential equation tdwi/dt =(wi) des-wi , i = 1,2, where t is the time constant of the drive motors.

 

Solution:

 

 (a) Q = KDP1/2, where DP= P1-P2

 

Q=K/(2DP01/2) P

 

 (b) dL/dt = pD (W1-W2)/2=pD (w1-w2)/2

 

L = L’ +l

 

Therefore, dL/dt = dl/dt

 

Hence, dl/dt = pD (w1-w2)/2, l (t0) =0

©

(i)                  The incremental model is dl/dt = (D/2)[w1(t)-w2(t)]

 

Due to the assumed absence of roller dynamics, w1and w2 are constant over the interval kT< t < (k+1) T.

 

Therefore, l (kT+T)=l (kT) +(DT/2)[w1(kT)-w2(kT)]

 

(ii)  Assuming first-order dynamics,

 

kT+T

l (kT+T) = l (KT) +(D/2)ò[w1(t)-w2(t)] dt

kT

w1(t)-w2(t) =[w1(kT) des-w2(kT) des](1-e- (t-kT)/t)

 

Therefore,

 

L (kT+T) =l (kT) + =[w1(kT) des-w2(kT) des](DT/2)[1-(t/T)(1-e-T/t)]

 

TOP

 

 

Problem 9.8: Examples of discrete and continuous signals

 

State whether the following signals are discrete or continuous.

(i)   elevation contours on a map

(ii)  the score of basketball game

(iii) signals leaving or entering the CPU of a computer.

 

 

Solution:

 

(i) continuous (ii)discrete (iii)discrete

 

 

Problem 9.9: Stability of  a discrete time system using bilinear transformation

 

(a)    How would you modify the Routh-Hurwitz criterion to study the stability of a closed-loop discrete-time system?

(b)   The characteristic polynomial of a closed-loop discrete-time system is given by

 

z3 + 5z2 + 3z +2 =0.

 

Determine the stability of the system using the bilinear transformation.

 

Solution:

 

(b)

 

f(z)= z3+5z2+3z+2=0

 

Substitute z= (w+1)/(w-1) and obtain

 

F(w) =11 w3-w2+w-3 =0

 

Construct Routh table. From Routh table,there is one sign change in the first column.

 

Hence UNSTABLE system.

 

TOP

 

Problem 9.10:   Stability from the characteristic polynomial corresponding to the pulse transfer function of a sampled data system 

 

 

(a)    Discuss the use of the bilinear transformation

 

z =  (r+1)/(r+2)

 

to determine the stability of a sampled data control system.

 

(b)   The characteristic polynomial corresponding to the pulse transfer function of a sampled data system is

 

f(z) = z3 +5.94z2 + 7.2 z –0.368

 

Investigate the stability of the system.

 

Solution:

 

(b)

 

Using the bilinear transformation, the system characteristic equation becomes

 

((r+1)/(r-1))3+5,94((r+1)/(r-1))2+7.7(r+1)/(r-1)-.368=0

 

or

 

f( r)=14.27r3+2.3 r2-11.47r+3.13=0

Routh’s array

 

r3  14.27    -11.47

r2    2.3        3.13

r1    -31.1

r0  3.13

 

Two sign changes. Two zeroes of he characteristic polynomial f(z) will remain outside the unit circle. System is UNSTABLE.

 

TOP

 

Problem 9.11: Position servo operated by a sampler and a zero order hold

 

 

(a)    What is the state transition matrix? Explain its use.

(b)   Fig.9 shows a sampled data position servo system with error-sampling and zero-order hold (ZOH). Fig. 10 shows its state-variable diagram. Determine qo and dqo/dt at  sampling instants. Find the solution of the state vector x(k) for a step input qi (t) at sampling instants T= 1 and 2 seconds. Assume zero initial conditions. Use state transition matrix.

 

 

 

 

ZOH

                                                      Plant

qi(t)             e(t)

       +                                                                                     qo(t)

T                                                       T

         

 

 

 

 

 

 

 


Fig.9

 

 

qi(t)   e(t)         e(kT)         x2=dqo/dt        

ZOH

1/s

1/s

  x1=qo    +

·              T                           -

                                           

 

 

 

 


Fig.10

 

Solution:

 

 

 (b)              Double vertical bars indicate matrices.

 


A= 0    1          

      0   -1

 


   B=   0                 f(T)=Laplace-1 (sI-A) -1

                       1     t=T

 

1

= Laplace-1               s        -1

 

                            0       s+1   t=T

 

=             1/(s+1)         -1/(s(s+1))

 

                0                         1/s           t=T

                                                        

 


=               1      1-e-T                   =   1    .632

                 0      e-T                                 0      .368

 

           T

y(T)= òf(l)Bdl

           0

 

 

           T

y(T)= ò          1        1-e-l             0        dl

          0           0        e-l                1   

 

 


       T + e-T-1

=            -e-T+1

                                 T=1

 


=    .368

      .632

 

State variable equations become

 

 


X(k+1) =        1    .632         X(k)  +             .368        [r(k)-X(k)]

                       0    .368                                 .652

 

 

For step function, r(k)=1, and obtain the solution

TOP

 

Problem 9.12: Examples of discrete and continuous signals

-

(a)    State whether the following signals are discrete or continuous.

                                 i.      Temperature in a room

                               ii.      Digital clock display

                              iii.      The output of a loudspeaker

 

Solution:

i.                    Continuous

ii.                   Discrete

iii.                  Continuous

 

 

Problem 9.13: Drawing   the simulation diagram of a system represented  by the transfer function G(z)

 

(a)    State whether the following systems are discrete or continuous:

 

i.                     Elevation contours in a  map

ii.                   Temperature in a room

iii.                  Digital clock display

iv.                 The score of  a basketball game

v.                   The output of  a loudspeaker.

 

(b) A discrete –time system can be simulated  on a digital computer in the same way as a continuous-time system on an analogue computer. The only difference is that integrators are replaced by delays. This implies that the blocks containing s-1 are replaced by blocks containing z-1. Use this approach  to draw the simulation diagram for a system represented  by the transfer function

                                   3z2 + 4z

G(z)  =

                          z3 – 1.2z2 +0.45 z – 0.05

 

 

 

 

 

 

Solution:

 

 

 

 

G(z) = 3z-1+4z-2                                  =Y(z)U(z) -1

1- 1.2z-1 +.45z-2-.05z-3

 

 

 

 

 

 

 

3

4

+

 

 


y

+

z-1

z-1

z-1

u

1.2

-.45

.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


TOP

 

Problem 9.14: To obtain the equivalent discrete time equation from the state space description of a continuous time plant

 

 (a) Describe  a numerical method for the solution of  continuous time state equations.

(b)The state space description for a  continuous-time plant is

 


A =     0           1       B =      0

                 0          -1                  1

 

Obtain the equivalent discrete-time equation. Take the sampling instant, T = 1s.

Solution:

 

(b)   x(t) = exp(A(t-t0))x(t0) +¦ exp(A(t-t0))Bu(t)dt

 

Setting t0=kT and t= (k+1)T and assuming u(t)=u(kT) for kT less than/equal to t less than(k+1)T,

 

we get

 

X(k+1) =f(T)x(k)+q(T)u(k)

 

Where f(T) =exp(At)

 

q(T)=¦exp(Al)Bdl

 

For given A, exp(At)= f(t)= 1    1-exp(-t)

                                              0     -exp(-t)

                         

 


Selecting T=1s,we get f(T) =      1       .632

                                                     0       ,368

 

 

q(T)=¦exp(Al)B.dl  for limits 0 to 1 =  .368

 

                                                          .632

 

 


Therefore  X(k+1) =  1     .632       x1(k)         +       .368      u(k)

                                   0     ,368       x2(k)                  .632

 

 

TOP

 

Problem 9.15: The z-transform

 

(a)    Show that the z-transform of f(t) = sin wt for t > 0 is

 

F(z) =       z sin wt

                z2-2z cos wt +1

 

(b)   Find f(kT) if

 

                                F(z) =       10z

                                          (z-1)(z-2)

 

(c)    If G*(s) =å f(nT) e-nTs, show that the closed form solution for

 

G(s) =     1

           (s+p)

 

is                                 

 

G*(s) =       1

            1-e T(s+p).

 

           

            

Solution:

 

 (a)g(t)=e-pt.

Then for  t = T
G* = å¥n=0  e-npT e-nTs

 

= å¥n=0  e-nT (p+s)

 

= å¥n=0  Xn  where X= e-T (p+s)

 

å¥n=0  Xn  =1/(1-X)

 

G*(s) = 1

 

                   1-e-T (p+s)

 

(b) sinwt= exp(jwt)-exp(-jwt)

                        2j

F(z) =(1/2j){z                                 - z                   }

          z-exp(jwt)                   z-exp(jwt)

 

=  zsinwt

         z2-2zcoswt+1

 

(c )   X(z)/z = 10

(z-1)(z-2)

X(z) = -10z   + 10z

             (z-1)      (z-2)

 

x(kT) = -10 +10.2k

 

=10(-1 +2k)   (k=0,1,2…)

 

or, x(0)=0

x(T)= 10

x(2T)= 30

x(3T)= 70

x(4T)= 150

TOP

 

Problem 9.16: Pulse transfer function of  a discrete time system

 

(a)    The discrete-time system of Fig.12 has the open-loop transfer function:

 

G(s) =     10

            s(s+1)

 

 

 

 

      G(s)

  R        +                  T=1                                            C

                        

                   -          

       

Fig.12

 

Show that the system is unstable.           

 

(b) Obtain the pulse transfer function of the closed-loop   system  shown in Fig.13.     

                   

  R       

      G(s)

+                  T                                               C

                        

                   -          

      H(s)

       

                                 T                                  T

 

Fig. 13

 

Solution:

 (a)

 

G(z) = 10(1- exp(-1))z

(z-1) (z-exp(-1))

Characteristic equation: 1+G(z) =0

(z-1) (z-exp(-1)) +10 (1-exp(-1))z=0

exp(-1)=).368

therefore, z2 +4.952z +.368=0

z= =0.076,-4.876

Magnitude of one root >1

Therefore, unstable.

 

 (b)

E

  R       

      G(s)

+                  T                                               C

                        

             B      -          

      H(s)

       

                                 T                                  T

 

E(s) =R(s) – B(s)

E(z)= R(z) – B(z)

C(z) = G(z) E(z)

B(z) = H(z)C(z)

Therefore, C(z) =[ R(z) –H(z)C(z)]G(z)

Or, C(z)/R(z) = G(z)

1+H(z) G(z)

 

TOP

 

OBJECTIVE TYPE QUESTIONS:

 

 

Answer the following:

 

(i)                  In multiple- rate sampling

 

(a)    the sampling instants are random

(b)    two concurrent sampling operations occur at tk = pT1and qT2 where T1and T2 are constants  and p,q are integers

(c)    the sampling instants are equally spaced, or tk = kT (k = 0, 1, 2….)

(d)   the pattern of the tk is repeated  periodically

 

Ans: ( b )

 

 

(ii)                Match List E with List F given below.

 

 

 

List E

List F

 

A

Analogue controller

I

Are high performance controllers and are combinations of analogue & digital controllers.

B

Digital controller

II

Represent the variables in the equations by continuous physical quantities and can be designed that will serve as  nondecision making controllers

C

Hybrid controller

III

Operate only on numbers and are currently being used for the solution of optimal operation of industrial plants.

 

 

The correct matching is

(a)AII BIII CI

(b) AI BII CIII

( c ) AIII BII CI

(d)AI BIII CII

 

Ans: (a)

 

 ( iii) The z-transform of f(t) = et is

 

(a)    z/(z-1)

(b)   z/(z-eT)

(c)    z/(z- e-jT)

(d)   Tz/(z-1)2

Ans: ( b)

 

 (iv ) The initial and final values of the time function corresponding to the z-transform

 

 

4z3-5z2+8z

(z-1)(z-0.5)2

 

are

 

(a)    Zero and indeterminate

(b)   2 and 14

(c)    4 and 28

(d)   8 and 56

 

respectively.

Ans: ( c)

 

( v ) Match List E with List F in the following Table of z transforms. 

List E, List F

A, x(t)=d(t), I, x(z)=  z /(z-1)

B, x(t)=u(t), II, x(z)=Tz/(z-1)2

C, x(t)=t, III, x(z)=z/(z-e-T)

D, x(t)=e-t, IV, x(z)=1

 

The correct matching is

(a)AIII BII CIV DI

(b)AIV BI CII DIII

©AII BIII CI DIV

(d)AI BIVCIII DII

 

Ans: (b)

 

( vi ) Match List E with List F in the following Table of  transducer types. 

List E,                       List F

A, Sampled data transducer, I,  A transducer in which the input signal is a quantized signal and the output signal is a smoothed continuous function of time.

B, Digital transducer, II, A transducer in which the input signal is a continuous function of time and the output signal is a uantized signal which can assume only certain discrete levels

C, Analogue to Digital transducer, III, A transducer in which the input and output signals occur only at discrete instants of time, but the magnitudes of the signals are unquantized

D, Digital to Analogue transducer, IV, A transducer in which the input and output signals occur only at discrete instants of time, and the signal magnitudes  are quantized

 

The correct matching is

(a)AIII BII CIV DI

(b)AIV BI CII DIII

©AIII BIV CII DI

(d)AI BIVCIII DII

 

Ans: ( c) TOP