ðHgeocities.com/csindulkar/bodeplots.htmlgeocities.com/csindulkar/bodeplots.htmlelayedx!ŽÕJÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÀ?‘T©OKtext/html€'9nT©ÿÿÿÿb‰.HSat, 19 Jun 2004 03:56:33 GMTºMozilla/4.5 (compatible; HTTrack 3.0x; Windows 98)en, *ŽÕJT© Bode and Log Magnitude Plots

Bode and Log Magnitude Plots

 

Bode Magnitude and Phase Plots

 

System Gain and Phase Margins & Bandwidths

 

Polar Plot and Bode Diagrams

Transfer Function from Bode Plots

 

Bode Plots of Open Loop and Closed Loop Systems

 

 

 

 

 

 

Objective type questions

 

 

 

Problem 5.1   Bode Magnitude and Phase Plots

 

Given the transfer function

 

G(s) = 300/[s(s+4)(s+8)]

 

(a)    sketch the Bode magnitude and phase  plots

(b)   sketch the polar plot

(c)    sketch the log-magnitude/phase diagram.

(d)   Why does using logarithmic co-ordinates reduce the drudgery in plotting the Bode plots considerably?

(e)    How are the gain and phase margins determined by using the Bode plots?

 

 

 

Solution:

 

G(s) = 300/[s(s+4) (s+8)] = (75/8)/[s (1+ s) (1+s)

4              8

 

 

 

 

 

 

 

 

 

 

 

 

 


(a)         19.44                                                     slope =- 6 dB /octave

 

 


Gain, dB                                                                                          slope= -12 dB /octave

 

 


                                                                                                           Slope = -18 dB /octave

 


                                                                                                                         w (log scale)

                       0.5                        1            2              4                       8

 

 

 

 

 

 

Phase shift    00

                                                   1            2              4                        8          w (log scale)

 

 

                  -900

                                                              (-130.80)

                -1800                                                                          (-161.60)

                                                                                                         (-198.40)

                -2700

 

 

 

                                                          Im

(b)

 

 


                                     -1                                                            Re

 

 


                                  w increasing

 

 

 

 

 

 

 

 

        

(c)                                                         dB

 

 


                                                             - 6

 

                                                                                                                                      f

                                                            -270           -180              -90

 

 

 

 

 

 

(d)   Log scale is used for the w axis. The simplification in the Bode plot results due to the basic advantage of logarithmic representation that multiplication and division are replaced by addition and subtraction respectively. There are several other advantages of Bode plots.

 

(e)    Theoretical.

 

 

TOP

 

Problem 5.2   System Gain and Phase Margins & Bandwidths

 

(a)                Obtain the phase and gain margins of a unity feedback system  whose open loop transfer function is

 

G(s) = K/[s(s+1)(s+5)]

 

for the two cases where K=10 and K =100 respectively.

 

(b)               For the  following two systems:

 

System I:

 

C(s)/R(s)= 1/(s+1)

 

System II:

 

C(s)/R(s) = 1/(3s+1)

 

  1. Draw the Bode magnitude graphs
  2. Compare the bandwidths of the two systems
  3. Show the step-response and ramp-response curves for the two systems.
  4. Which one of the two systems has a faster speed of response and therefore can follow the input much better?

 

Solution:

                                                                                                          +8 dB gain margin

 

 

 

 

 

 

 

 

K=10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

                                         30

                                              20

                                             10

                                              0

G│in dB                           -10

                                           -20

                                           -30

                                         0

                                      Phase margin +21 deg.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

-90

ÐG in deg.

 

                                              -180

 

 

                                              -270            

 

                                                      0.2        0.4   0.6   0.8     1           2             4       6    8  10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                   -12 dB gain margin

 

 

 

 

 

 

 

 

K=100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

                                         50

                                              40

                                             30

                                              20

G│in dB                             10

                                              0

                                           -10

                                               0

                                      Phase margin -30 deg.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

-90

ÐG in deg.

 

                                              -180

 

 

                                              -270            

 

                                                      0.2        0.4   0.6   0.8     1           2             4       6    8  10

 

 

 

 (b) (i)

                                      0                                                                     I

                                                                                                             II

                          dB

 

 

                                     -20

 

                                                             0.33         1                                        w (log scale)

 

 

The above figure shows the closed loop response curves for the two systems (Asymptotes are shown by dotted lines)

 

(ii) System I: Bandwidth is 0≤ w≤1 rad/s

System II: Bandwidth is 0≤ w≤0.33 rad/s

 

 

 

 

       (iii)            C (t)                                                                          R (t)

                                      1

                           

                                                   

                                                     I          II

                                                                                                                      t

The above Figure shows the step response curves of the two systems

 

 


                                C (t)                       R (t)

                                                                                I

 

                                                                                 II

                                     1

 

                                                                                                                         t

                                                       1

 

The above Figure shows the ramp response curves of the two systems.

 

(iv) System I whose bandwidth is  three times wider than that of system II   has a faster speed of response  and can follow the input much better.

 

TOP

 

 

Problem 5.3  Polar Plot and Bode Diagrams

 

(a)    Sketch the polar plot of the frequency response for the following transfer function at w = 0, 1, 5…infinity:

 

        GH(s) =              1

                           (1+ 0.5 s) (1+ 2s)

 

(b)   Draw the Bode diagram representation of the frequency response for the transfer function given in Part (a). Show the points on the diagram at w =0.5, 1, 2, 8, and so on.

 

Solution:

 (a)

 

w

0

1

5

µ

 GH

1

0.4

0.037

0

f

00

-900

-1530

-1800

 

 

(b)

w

0.5

1

2

8

dB

-3.27

-8

-15.3

-36.4

f

-590

-900

-1210

-1620

 

The polar plot and Bode diagrams  can be plotted from the above calculations.

 

 

 

 

 

 

Problem 5.4    Transfer Function from Bode Plots

 

The frequency response of a control system is given in Table 1. Sketch the Bode plots and hence estimate the transfer function.

 

Table 1

w

M (dB)

f

w

M (dB)

f

0.1

20.0

-90.30

10

-14

-1800

0.2

14.0

-90.30

15

-26.8

-2390

0.4

8.0

-90.30

20

-36

-2520

0.6

4.46

-90.30

30

-47.8

-2590

1

0.08

-90.30

40

-55.6

-2620

2

-5.71

-90.30

50

-61.6

-2640

4

-10.77

-90.30

60

-66.5

-2650

6

-12.55

-90.30

80

-74.1

-2660

8

-12.7

-90.30

100

-79.9

-2670

 

 

Solution:

 

Draw the magnitude and phase plots.

 

As w tends to zero, f tends to infinity. Hence, we have one pole at the origin. For large w, f tends to –270 deg. Hence the excess of poles over zeroes is three.

A rapid change in f near w = 10 indicates a pair of complex conjugate poles with wn= 10. Since f = -180deg. For w= 10, we have wn= 10. Thus

G(s)= K/[s (s2+2xwn+wn2)]

As the gain approaches 0 dB foe small values of w, we have K=wn2= 100.

For  w= 10, s=j10, hence

G (j10) = 0.1/2xÐ180deg. The gain for w= 10 is –14 db or 10-14/20=0.2

Or, x= 0.25

Hence G(s)= 100/[(s (s2+5s+100)]

 

 

TOP

 

Problem 5.5   Bode Plots of Open Loop and Closed Loop Systems

 

                (a)            The block diagram of a speed-control system is shown in Fig.1.

 

 

                                  Motor                            Load

80s2(s+7)

(s+2)2(s2+6s+25)

 

( voltage)                                       

2.5

4s+2

v                                                                                              w

                 -                                       Torque                   (speed)                        

 

 


Fig.1

 

Draw and label the Bode magnitude and phase plots  of the open-loop and the closed- loop systems.

 

               (b)            State the practical use of the Bode plots.

 

 

 

 

TOP

 

Objective type questions:

 

 

(i)      The desirable frequency- domain specifications for a control system are:

 

(a)    relatively large resonant magnitude, Mpw

(b)   relatively large bandwidths so that the system time constant, t = 1/xwn ,  is sufficiently small

(c)    relatively small resonant magnitude, Mpw

(d)   relatively large bandwidths so that the system time constant, t = 1/xwn,   is sufficiently large

 

Ans:( b  )

 

TOP