4.0 CPU TIMING

The Z80-CPU executes instructions by stepping through a very precise set of a few basic
operations. These include:

Memory read or write
1/0 device read or write

Interrupt acknowledge
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All instructions are merely a series of these basic operations. Each of these basic operations
can take from three to six clock periods to complete or they can be lengthened to syn-
chronize the CPU to the speed of external devices. The basic clock periods are referred to as
T states and the basic operations are referred to as M (for machine) cycles. Figure 4.0-0
illustrates how a typical instruction will be merely a series of specific M and T cycles. Notice
that this instruction consists of three machine cycles (M1, M2 and M3). The first machine
cycle of any instruction is a fetch cycle which is four, five or six T states long (unless
lengthened by the wait signal which will be fully described in the next section). The fetch
cycle (M1) is used to fetch the OP code of the next instruction to be executed. Subsequent
machine cycles move data between the CPU and memory or 1/0 devices and they may have
anywhere from three to five T cycles (again they may be lengthened by wait states to
synchronize the external devices to the CPU). The following paragraphs describe the timing
which occurs within any of the basic machine cycles. In section 7, the exact timing for
each instruction is specified.

BASIC CPU TIMING EXAMPLE

Machine Cycle

M1 I m2 M3
(OP Code Fetch) (Memory Read) {Memory Write)

instruction Cycle

FIGURE 4.0-0

All CPU timing can be broken down into a few very simple timing diagrams as shown in
Figure 4.0-1 through 4.0-7. These diagrams show the following basic operations with and
without wait states (wait states are added to synchronize the CPU to slow memory or
1/0 devices).

4.0-1. Instruction OP code fetch (M1 cycle)

4.0-2. Memory data read or write cycles

4.0-3. 1/0 read or write cycles

4.0-4. Bus Request/Acknowiledge Cycle

4.0-5. Interrupt Request/Acknowledge Cycle

4.0-6. Non maskable Interrupt Request/Acknowledge Cycle
4.0-7. Exit from a HALT instruction

17
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s active to indicate that the memory read data should be
The CPU samples the data from the memory on the data
bus with the rising edge of the clock of state T3 and this same edge is used by the CcPU
to turn off the B’D and MREOQ signals. Thus the data has already been sampled by the CPU
before the RD signal becomes inactive. Clock state T3 and T4 of a fetch cycle are used to
refresh dynamic memories. (The CPU uses this time to decode and execute the fetched
instruction so that no other operation could be performed at this time). During T3 and T4
the tower 7 bits of the address bus contain a memory refresh address and the RFSH signal
becomes active to indicate that a refresh read of all dynamic memories should be accom-
plished. Notice that a RD signal is not generated during refresh time to prevent data from
different memory segments from being gated onto the data bus. The MREQ signal during
refresh time should be used to perform a refresh read of all memory elements. The refresh
signal can_not be used by itself since the refresh address is only guaranteed to be stable

during MREQ time.
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Figure 4.0-1A illustrates how the fetch cycle is delayed if the memory activates the WAIT
line. During T2 and every subsequent Tw, the CPU samples the WAIT line with the falling
edge of ®. If the WAIT line is active at this time, another wait state will be entered during
the following cycle. Using this technique the read cycle can be lengthened to match the

access time of any type of memory device.
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MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code
fetch (M1 cycle). These cycles are generally three clock periods long unless wait states are
requested by the memory via the WAIT signal. The MREQ signal and the RD signal are used
the same as in the fetch cycle. In the case of a memory write cycle, the MREQ also becomes
active when the address bus is stable so that it can be used directly as a chip enable for
dynamic memories. The WR line is active when data on the data bus is stable so that it can
T \ be used directly as a R/W pulse to virtually any type of semiconductor memory. Further-
—_\——4— more the WR signal goes inactive one half T state before the address and data bus contents
are changed so that the overlap requirements for virtually any type of semiconductor
memory type will be met.

MEMORY READ OR WRITE CYCLES
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Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or
write operation. This operation is identical to that previously described for a fetch cycle.
Notice in this figure that a separate read and a separate write cycle are shown in the same
figure although read and write cycles can never occur simultaneously.

MEMORY READ OR WRITE CYCLES WITH WAIT STATES
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INPUT OR OUTPUT CYCLES

Figure 4.0-3 illustrates an 1/O read or /O write operation. Notice that during 1/0 operations
a single wait state is automatically inserted. The reason for this is that during 1/0 operations,
the time from when the IORQ signal goes active until the CPU must sample the WAIT line
is very short and without this extra state sufficient time does not exist for an /O port to
decode its address and activate the WAIT line if a wait is required. Also, without this wait
state it is difficult to design MOS 1/0 devices that can operate at full CPU speed. During
this wait state time the WAIT request signal is sampled. During a read I/O operation, the
RD line is used to enable the addressed port onto the data bus just as in the case of a
memory read. For |/O write operations, the WR line is used as a clock to the 1/O port, again
with sufficient overlap timing automatically provided so that the rising edge may be used as
a data clock.

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line.
The operation is identical to that previously described.

3US REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-4 iliustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ
signat is sampled by the CPU with the rising edge of the last clock period of any machine
cycle. If the BUSRQ signal is active, the CPU will set its address, data and tri-state control
signals to the high impedance state with the rising edge of the next clock pulse. At that
time any external device can control the buses to transfer data between memory and /O
devices. (This is generally known as Direct Memory Access [DMA] using cycle stealing).
The maximum time for the CPU to respond to a bus request is the length of a machine
cycle and the external controller can maintain control of the bus for as many clock cycles
as is desired. Note, however, that if very long DMA cycles are used, and dynamic memories
are being used, the external controller must also perform the refresh function. This situation
only occurs if very large blocks of data are transferred under DMA control. Also_note that
during a bus request cycle, the CPU cannot be interrupted by either a NMI or an INT signal.
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INTERRUPT REQUEST/ ACKNOWLEDGE CYCLE

Figure 4.0-5 iliustrates the timing associated with an interrupt cycle. The interrupt signal
(TNT) is sampled by the CPU with the rising edge of the last clock at the end of any in-
struction. The signal will not be accepted if the internal CPU software controlied interrupt
enable flip-flop is not set or if the BUSRQ signal is active. When the signal is accepted a
special M1 cycle is generated. During this special M1 cycle the IORQ signal becomes active
(instead of the normal MREQ) to indicate that the interrupting device can place an 8-bit
vector on the data bus. Notice that two wait states are automatically added to this cycle.
These states are added so that a ripple priority interrupt scheme can be easily implemented.
The two wait states allow sufficient time for the ripple signals to stablilize and identify
which 1/0 device must insert the response vector. Refer to section 8.0 for details on how the

interrupt response vector is utilized by the CPU.
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— Figure 4.0-5A illustrates how additional wait states can be added to the interrupt response
cycle. Again the operation is identical to that previously described.

\‘ INTERRUPT REQUEST/ACKNOWLEDGE WITH WAIT STATES
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Figure 4.0-6 illustrates the request/acknowledge cycle for the non-maskable interrupt.

e A pulse on the NMI input sets an internal NMI latch which is tested by the CPU at the

end of every instruction. This NMI latch is sampled at the same time as the interrupt line,

but this line has priority over the normal interrupt and it can not be disabled under soft-

ware control. Its usual function is to provide immediate response to important signals

BN such as an impending power failure. The CPU response to a non maskable interrupt is

similar to a normal memory read operation. The only difference being that the content

of the data bus is ignored while the processor automatically stores the PC in the external

stack and jumps to location 0066H. The service routine for the non maskable interrupt
must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP’s until an
interrupt is received (either a non-maskable or a maskable interrupt while the interrupt
flip flop is enabled). The two interrupt lines are sampled with the rising clock edge during
each T4 state as shown in Figure4.0-7. |f a non-maskable interrupt has been received or a
maskable interrupt has been received and the interrupt enable flip-flop is set, then the halt
state will be exited on the next rising clock edge. The following cycle will then be an inter-
rupt acknowledge cycle corresponding to the type of interrupt that was received. If both are
received at this time, then the non maskabie one will be acknowledged since it was highest
priority. The purpose of executing NOP instructions while in the halt state is to keep the
Mode 0 shown memory refresh signals active. Each cycle in the halt state is a normal M1 {fetch) cycle
except that the data received from the memory is ignored and a NOP instruction is forced
internally to the CPU. The halt acknowledge signai is active during this time to indicate
S that the processor is in the halt state.
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8.0 INTERRUPT RESPONSE

The prupose of an interrupt is to allow peripheral devices to suspend CPU operation in an
orderly manner and force the CPU to start a peripheral service routine. Usually this service
routine is involved with the exchange of data, or status and control information, between
the CPU and the peripheral. Once the service routine is completed, the CPU returns to the
operation from which it was interrupted.

INTERRUPT ENABLE — DISABLE

The Z80-CPU has two interrupt inputs, a software maskable interrupt and a non-maskable
interrupt. The non-maskable interrupt (NMT) can not be disabled by the programmer and
it will be accepted whenever a peripheral device requests it. This interrupt is generally
reserved for very important functions that must be serviced whenever they occur, such as
an impending power failure. The maskable interrupt (INT) can be selectively enabled or
disabled by the programmer. This allows the programmer to disable the interrupt during
periods where his program has timing constraints that do not allow it to be interrupted.
in the Z80-CPU there is an enable flip flop (called IFF) that is set or reset by the prog-
rammer using the Enable interrupt (EI) and Disable Interrupt (D1) instructions. When the
IFF is reset, an interrupt can not be accepted by the CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip flops,
called IFF{ and IFFo.

IFFy

Actually disables interrupts Temporary storage location
from being accepted. for IFFq.

The state of IFFq is used to actually inhibit interrupts while IFF5 is used as a temporary
storage location for IFFq. The purpose of storing the IFF 1 will be subsequently explained.

A reset to the CPU will force both IFF4 and IFF9 to the reset state so that interrupts are
disabled. They can then be enabled by an El instruction at any time by the programmer.
When an El instruction is executed, any pending interrupt request will not be accepted until
after the instruction following El has been executed. This single instruction delay is neces-
sary for cases when the following instruction is a return instruction and interrupts must not
be allowed until the return has been completed. The El instructions sets both IFFq and
IFF5 to the enable state. When an interrupt is accepted by the CPU, both IFFq and IFF5
are automatically reset, inhibiting further interrupts until the programmer wishes to issue a
new El instruction. Note that for all of the previous cases, IFF 41 and IFF5 are always equal.

The purpose of IFF9 is to save the status of IFF 1 when a non-maskable interrupt occurs.
When a non-maskable interrupt is accepted, IFFq is reset to prevent further interrupts
until reenabled by the programmer. Thus, after a non-maskable interrupt has been accepted
maskable interrupts are disabled but the previous state of IFF 1 has been saved so that the
complete state of the CPU just prior to the non-maskable interrupt can be restored at any
time. When a Load Register A with Register | (LD A, 1) instruction or a Load Register A
with Register R (LD A, R) instruction is executed, the state of IFF 5 is copied into the
parity flag where it can be tested or stored.

A second method of restoring the status of IFFq is thru the execution of a Return From
Non-Maskable Interrupt (RETN) instruction. Since this instruction indicates that the non
maskable interrupt service routine is complete, the contents of IFF 5 are now copied back

into IFFq, so that the status of IFF 9 just prior to the acceptance of the non-maskable
interrupt will be restored automatically.
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Figure 8.0-1 is a summary of the effect of different instructions on the two enable flip flops.

INTERRUPT ENABLE/DISABLE FLIP FLOPS

Action IFF; IFF,

CPU Reset 0 0

DI

Ef 1 1

LD A, I . . IFF 5 > Parity flag
LD A,R . . IFF 5 = Parity flag
Accept NMI 0 .

RETN IFF; o IFF5 = 1FF,
Accept INT 0 0

RETI . .

“e” indicates no change

FIGURE 8.0-1
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CPU RESPONSE
Non-Maskable

A non-maskable interrupt will be accepted at all times by the CPU. When this occurs, the
CPU ignores the next instruction that it fetches and instead does a restart to location
0066H. Thus, it behaves exactly as if it had received a restart instruction but, itis to a
location that is not one of the 8 software restart locations. A restart is merely a call to a
specific address in page 0 memory.

Maskable

The CPU can be programmed to respond to the maskable interrupt in any one of three
possible modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupt-
ing device can place any instruction on the data bus and the CPU will execute it. Thus, the
interrupting device provides the next instruction to be executed instead of the memory.
Often this will be a restart instruction since the interrupting device only need supply a
single byte instruction. Alternatively, any other instruction such as a 3 byte call to any lo-
cation in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 more than the normal
number for the instruction. This occurs since the CPU automatically adds 2 wait states to an
interrupt response cycle to allow sufficient time to implement an external daisy chain for
priority control. Section 4.0 illustrates the detailed timing for an interrupt response. After
the application of RESET the CPU will automatically enter interrupt Mode O.

Mode 1

When this mode has been selected by the programmer, the CPU will respond to an interrupt
by executing a restart to location 0038H. Thus the response is identical to that for a non
maskable interrupt except that the call location is 0038H instead of 0066H. Another
difference is that the number of cycles required to complete the restart instruction is 2
more than normal due to the two added wait states.
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on the two enable flip flops.
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Mode 2

This mode is the most powerful interrupt response mode. With a single 8-bit byte from the
user an indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every in-
terrupt service routine. This table may be located anywhere in memory. When an interrupt
is accepted, a 16 bit pointer must be formed to obtain the desired interrupt service routine
starting address from the table. The upper 8 bits of this pointer is formed from the contents
of the | register. The | register must have been previously loaded with the desired value by
the programmer, i.e. LD I, A. Note that a CPU reset clears the | register so that it is ini-
tialized to zero. The lower eight bits of the pointer must be supplied by the interrupting
device. Actually, only 7 bits are required from the interrupting device as the least
bit must be a zero. This is required since the pointer is used to get two adjacent bytes to
from a complete 16 bit service routine starting address and the addresses must always start
in even locations.
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Starting high order CONTENTS PERIPHERAL
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Table

The first byte in_the table is the least significant (low order) portion of the address. The
programmer must obviously fill this table in with the desired addresses before any interrupts
are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/
Write Memory)} to allow different peripherals to be serviced by different service routines.

Once the interrupting device supplies the lower portion of the pointer, the CPU automat -
cally pushes the program counter onto the stack, obtains the starting address from the table
and does a jump to this address. This mode of response requires 19 clock periods to com-
plete (7 to fetch the lower 8 bits from the interrupting device, 6 to save the program
counter, and 6 to obtain the jJump address.)

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure
that automatically supplies the programmed vector to the CPU during interrupt acknow-
ledge. Refer to the Z80-P10, Z280-SI0 and Z80-CTC manuals for details.
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INTERRUPT REQUEST/ACKNOWLEDGE CYCLE
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Last M Cycle M1

of Instruction
Last T State

INTERRELATIONS
The following flow
the following from t
1. INT and NMT are
2. BUSRQ is acted ¢
3. While the CPU is i
4. These three input

Z80-CPU INTERRUPT SEQUE

INT —_——t———- -\ f ——————————————————————————————————————————
AD-A15 X PC REFRESH
Mi

i
MREQ T
| L
tQRQ 1
| \ a
!
DATA BUS : : { iy
(R N SO d__
______________________ r=—- | ————
L R R | _;_ __________________ l——---/—_\-—-—- ______
RD : :
IL Daisey Chain : Vector Placed
| Priority Frozen 1 onto Data Bus
I !
Z80 INTERRUPT ACKNOWLEDGE SUMMARY
1) PERIPHERAL DEVICE REQUESTS INTERRUPT. Any device requesting and interrupt
can pull the wired-or line INT low.
2) CPU ACKNOWLEDGES INTERRUPT. Priority status is frozen when M1 goes low
during the Interrupt Acknowledge sequence. Propagation delays down the |EI/IEO
daisy chain must be settled out when IORQ goes low. If IEl is HIGH, an active Peri-
pheral Device will place its Interrupt Vector on the Data Bus when I0RQ goes low.
That Peripheral then releases its hold on INT allowing interrupts from a higher
priority device. Lower priority devices are inhibited from placing their Vector on
the Data Bus or Interrupting because IEO is low on the active device.
3) INTERRUPT IS CLEARED. An active Peripheral device (IEI=1, IEO=0) monitors
OP Code fetches for an RETI (ED 4D} instruction which tells the peripheral that its
Interrupt Service Routine is over. The peripheral device then re-activates its internal
Interrupt structure as well as raising its |EQ {ine to enable lower priority devices.
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INTERRELATIONSHIP OF INT, NMI, AND BUSRQ

The following flow chart details the relationship of three control inputs to the Z80-CPU. Note
the following from the flow chart.

1. TNT and NMI are always acted on at the end of an instruction.

2. BUSRQ is acted on at the end of a machine cycle. L
m 3. While the CPU is in the DMA MODE, it will not respond to active inputs on INT or NMI._
T T Ty 4. These three inputs are acted on in the following order of priority: a)BUSRQ b)NMI ¢}INT

) T\ [\ 280-CPU INTERRUPT SEQUENCE
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I
! S e n 1
! N/
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I
I
|
| Vector Placed
i
|

/ice requesting and interrupt

SET NMI F/F ey

frozen when M1 goes low
delays down the IEI/IEO
IEl is HIGH, an active Peri-
Bus when IORQ goes low.
upts from a higher
m placing their Vector on
e device.

e (IEI=1, 1EO=0) monitors
1 tells the peripheral that its
then re-activates its internal
wer priority devices.
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